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Abstract

This thesis deals with the Dynamic Vehicle Routing Problem (DVRP) for which stochastic in-
formation is available. DVRP is interesting in that it enables the modeling of many practical
applications, that the offline VRP is not able to handle. Traditionally, the DVRPis solved in one
of two ways: when customers become known throughout the run, oblivious online algorithms
are used, in which the route is extended as more customers becomes available. Alternatively,
when all customers are available but with uncertainties in their properties, stochastic optimiza-
tion is used, which build the routing plan a priori, and then modifies it when changes in customer
properties occur.

This thesis is based on Van Hentenryck and Bent [2006], which present a new approach to
solving the DVRP by the use of stochastic information to guide the algorithm. The idea is to
use this extra knowledge to make more enlightened decisions than oblivious online algorithms
and furthermore handle more dynamic instances than stochastic optimization is able to solve
efficiently.

The algorithms of Van Hentenryck and Bent [2006] are implemented and extended to ef-
ficiently handle continuous positionings of customers by means of discretization of the map.
Furthermore, the relatively new offline algorithm ABHC is implemented as a sub-procedure for
the algorithms. These algorithms are compared to three oblivious online algorithms as well as
solutions found by an offline algorithm (ABHC). The results found are not entirely consistent
with those of Van Hentenryck and Bent [2006].

In most cases, the use of stochastic knowledge seems to help the algorithms find better solu-
tions than using oblivious online algorithms. Furthermore, the extension of thealgorithms seems
to improve the efficiency of the algorithms, but further testing is needed to confirm this.
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Resuḿe

Dette speciale omhandler dynamisk ruteplanlægning, hvor stokastisk information om problemet
er tilgængeligt. Dette er interessant, fordi det tillader modellering af mange praktiske applika-
tioner som normal offline ruteplanlænging ikke er i stand til at håndtere.

Traditionelt løses dynamisk ruteplanlægning på én af to m̊ader, alt efter karakteren af dy-
namik. Hvis det kun er en delmængde af kunderne, der kendes fra starten af dagen, bruges
klassiske (uvidende) online algoritmer, der laver en ruteplan og så udvider den i takt med, at
flere kunder bliver kendte. Hvis alle kunder derimod kendes, men med usikkerheder om deres
egenskaber (såsom tidsvinduer), bruges stokastiske optimering, hvori en færdig ruteplan laves a
priori, og s̊a tilpasses de ændringerne når de forekommer.

Dette speciale er baseret på Van Hentenryck and Bent [2006], der præsenterer en ny tilgang til
løse dynamiske ruteplanlægningsproblemer. Dette gøres ved at bruge denstokastiske viden, der
er tilgængelig om problemet til at guide planlægningen af ruteplanen. Tankener, at denne ekstra
viden kan bruges til at tage mere oplyste, og dermed bedre, valg end de uvidende online algo-
ritmer. Desuden er algoritmerne i stand til at håndtere mere dynamiske instanser end stokastisk
optimering er i stand til effektivt at h̊andtere.

Algoritmerne fra Van Hentenryck and Bent [2006] er implementeret og udvidet til effektivt
at kunne h̊andtere kontinuerte placeringer af kunder. Dette er gjort ved en diskretisering af ko-
rtet. Desuden er den relativt nye offline algoritme ABHC implementeret som ensub-procedure
til algoritmerne. De implementerede algoritmer bliver sammenlignet med tre uvidendeonline
algoritmer samt offline løsninger fundet af ABHC. Resultaterne fundet i dette speciale stemmer
ikke fuldstændigt overens med resultaterne fra Van Hentenryck and Bent [2006].

I de fleste tilfælde virker det til, at brugen af stokastisk viden hjælper algoritmerne til at
finde bedre løsninger end de uvidende online algoritmer. Desuden ser det ud til, at den imple-
menterede udvidelse med diskretisering af kortet hjælper til at gøre algoritmerne mere effektive,
men videre tests er nødvendige for at bekræfte det.
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1 Introduction

Routing is of increasing importance in today’s world. Whether it is browsing the Internet, send-
ing mail, transporting goods or traveling, routing is involved. While it is possibleto do this
without efficient algorithms, significant economic, logistic and time wise gains can be achieved
using the algorithms developed for this.

In Denmark, for example, transportation represents around 15% of national expenditures
[Larsen, 1999]. Furthermore, it is estimated that distribution constitute almosthalf of the total
logistics cost [De Backer et al., 1997]. Obviously, if the transportation expenditures of Denmark
could be lowered by planning more efficient routes, yielding shorter traveling distance or less
vehicles needed, significant economic gains could be made. Algorithms for the Vehicle Routing
Problem (VRP) address the issue of finding an efficient routing plan, visiting customers, deliv-
ering goods, or something similar, while trying to minimize some objective (eg. travel distance).
Informally, the VRP is defined as having a pool of customers that have to bevisited once. A
fleet of vehicles is available, and the problem is to visit the customers while minimizing some
objective such as time, cost, etc.

Traditionally, a distinction between off- and online problems has been made. In offline prob-
lems all data is known, whereas online problems are oblivious to what data willappear during
the execution. Naturally, there will be many problems that fall somewhere in between these two
categories: where some or all customers are known, but with uncertaintiesthat are not known a
priori. In general these have been handled in two ways depending on theproblem type. Either
with dynamic optimization, where optimization typically is performed on the known customers
and new are taken into account as they become available, or by stochastic optimization, in which
some data is stochastic and an a priori solution is made, and then, if an unforeseen event occurs,
a recourse function modifies the solution to handle this [Bent and Van Hentenryck, 2004a].

In terms of the VRP there are many applications in which the problem can be considered
online. To name a few examples; the routing of police cars, taxi services orambulances. Fur-
thermore, there are even applications that would traditionally be consideredoffline but could
be subject to sudden changes, like new customers appearing that urgently need service, traffic
accidents making the planned routes impossible, changes in the demands of customers, changed
traveling times due to heavy traffic, vehicles breaking down, etc.

During considerations on the subject of this thesis, Professor Jørgen Bang-Jensen recom-
mended the book“Online Stochastic Combinatorial Optimization”by Van Hentenryck and Bent
[2006], that presented a different approach to the problem of vehiclerouting in a dynamic set-
ting. Their approach is based on the fact that one, in general, has access to some stochastic
knowledge of the problem properties through a probabilistic model of the problem or historical
data. Van Hentenryck and Bent uses this knowledge to guide an online solver to good solutions
by anticipating future events. The approach is very interesting and has yielded good results,
compared to oblivious online algorithms.
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1.1. MOTIVATION

To grab the details of this thesis, it is expected that the reader has a level ofknowledge in the
field of computer science at the level of masters degree or above.

1.1 Motivation

This thesis is based on, and motivated by the book of Van Hentenryck and Bent [2006], which
amongst other is based on the work in [Bent and Van Hentenryck, 2003,2004a,b,c,d,e; Bent
et al., 2005; Bent and Van Hentenryck, 2005; Bent and Hentenryck,2006]. Van Hentenryck
and Bent describe a new way to handle the dynamic vehicle routing problem. Unlike previ-
ous stochastic algorithms, their methods are able to handle very dynamic instances. And unlike
traditional dynamic algorithms, it bases its decision on other than current visible requests, by
taking into account stochastic knowledge of the instance. While this means the algorithms need
stochastic information, it is not unreasonable to assume available in many cases, since either
stochastic models or, more commonly, historical knowledge of a problem instance often is avail-
able.

In the algorithms presented by Van Hentenryck and Bent [2006], they sample the expected
amount of customers to appear during the run — that is, based on the stochastic knowledge of
the instance, they make a qualified guess on which customers will appear andwhich properties
they will have. Using these sampled customers along with the ones that are already visible at
the current time constitutes a “sampled instance”. An offline heuristic can be used to solve
this, yielding a routing plan. Repeating this multiple times, a pool of solved sampled instances
becomes available. When a decision has to be made on which customer to servenext, this can
be guided by the pool of plans, and in this way guiding the solution of the onlineproblem by the
stochastic knowledge available.

This is a very interesting way of handling the problem which, to a degree, has been explored
previously by by Chang et al.. However, while Chang et al. achieved good results for online
packet scheduling, their method is not well suited for the online stochastic VRP due to the
limited time between decisions, and the computationally demanding optimization [Bent and
Van Hentenryck, 2004c]. As documented in Van Hentenryck and Bent [2006], along with several
of their articles, the methods they have developed achieves good results for the online stochastic
VRP.

1.2 Aim of Thesis

The aim of this thesis is to implement the algorithms of Van Hentenryck and Bent for the VRP
and to extend these. Furthermore, a comparison of the results with effective offline and online
algorithms should be made, as to be able to evaluate the value of stochastic information when
solving the dynamic vehicle routing problem.

When Van Hentenryck and Bent sample customers, this is done in a somewhatsimplified way,
in which customers can only appear in certain locations, with certain time windows, demand
and service times. This will be explained further in Chapter 2, 3, and 4. In this thesis, this will
be extended to allow customers to appear anywhere on the map, with arbitrarytime windows,
demand and service times according to some predefined distribution. To be able to use this
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CHAPTER 1. INTRODUCTION

efficiently with Van Hentenryck and Bents algorithms, a discretization of the mapis used. The
usefulness and effectiveness of such a discretization will be examined,and compared to the
principles of Van Hentenryck and Bent.

While this will be the main goal of the thesis, the use of other offline algorithms, than the ones
proposed by Van Hentenryck and Bent will be implemented, and their influence on the solution
will be evaluated. Furthermore, different ways of sampling customers will be examined, like in
Van Hentenryck and Bent [2006].

Finally, a summary of the implemented results is given along with ideas and discussions of
further extensions and work.
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2 Model

The Vehicle Routing Problem (VRP) is a well known and well studied problem.Due to the
great amount of work that has been done on it, a great number of specializations have emerged,
including capacity on vehicles, pickup and delivery of goods, time windowsfor customers,
multiple depots, a multitude of objective functions, etc.. So before examining the algorithms
developed for the Dynamic Vehicle Routing Problem, it is necessary to formulate the exact
properties of the problem studied in this thesis as to avoid confusion on the problem being
examined.

This chapter will start with an introduction to the most basic VRP. In section 2.2 and 2.3,
these definitions will be extended to include capacity on vehicles and time windows. Finally in
section 2.4, objectives relevant to this thesis will be discussed and defined, and in 2.5 a short
note on the hardness of the problem is given.

Note that the VRP and the extensions defined here, are the ones needed tounderstand and
define the offline algorithms dealt with in Chapter 6. The extensions and definitions related to
the dynamic version of this problem will be examined in Chapter 3.

2.1 The Basic Vehicle Routing Problem (VRP)

One of the most classic, well known, and well studied problem in the field of optimization is the
Traveling Salesman Problem (TSP). In this problem, a traveling salesman hasto visit a set of
cities while minimizing the overall traveled distance.

A generalization of this problem, is the Vehicle Routing Problem (VRP), in whichwe have
several traveling vehicles (or in the terminology of TSP; several salesmen) who can visit the
customers. The vehicles are identical and have to start and end their routein a depot. Each
customer has a location and should be visited once by one vehicle. The problem is to serve all
the customers while minimizing some objective (see section 2.4).

In the very basic version of VRP, we have a setC =
⋃n

i=1 ci of customers that each has to
be visited by one ofm vehicles. Each customer must be visited exactly once by one vehicle.
Therefore a customer is also called a request, and these two terms will be used interchangeably
throughout the rest of this thesis. The vehicles depart from a depoto, and all routes must start
and end here. Knowing that each vehicle has to start and end their route at the depot, serving
customers in between, we can define a route as

ρ =< o, c1, . . . , cn, o >, ci ∈ C, ci 6= cj ,∀i, j (2.1)

.
To denote the ordered set of customers in routeρ, cust(ρ) is used. Each route is served by

a vehicle, and in some contexts it is more natural to think of the route as a vehicle. For the
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2.1. THE BASIC VEHICLE ROUTING PROBLEM (VRP)

remainder of this thesis, the words “route”, “tour” and “vehicle” will be used interchangeably
depending on which word makes the understanding most clear.

We defineR as the union of the customers and depot;R = C
⋃

o. Between each pair
of neighbours inR a distanced(ci, cj),∀ri, rj ∈ R is defined. In the context of this thesis
d(ci, cj) = d(cj , ci). The total length of a route is the sum of the distance between the cus-
tomers it contains;d(ρ) = d(o, c1) + d(c1, c2) + . . . + d(cn, o). It is possible to have a cost
and/or travel time associated with each distance, but in the context of this thesis, these values are
all considered the same.

A solution to the VRP is a set of routes serving the customers. This is called a routing plan
(γ), and is defined

γ = (ρ1, . . . , ρm) whereρa 6= ρb, ∅ =
m
⋂

i=1

cust(pi) (2.2)

Together with (2.1), this definition ensures that no customer is served more than once. Like
in the case of routes,cust(γ) is used to denote the set of customers served by the routes of the
routing plan;

cust(γ) =
m
⋃

i=1

cust(ρi)

Similarly, the lengthd(γ) of a routing plan is the sum of the length of its routes:

d(γ) =
m

∑

i=1

cust(ρi)

In a valid solution, the routing plan has to serve all the customers, which can be defined by
the constraint:

R = cust(γ) (2.3)

In summary the Vehicle Routing Problem is, given a setR = C
⋃

o of vertices (customers
and depot), and a set of edges between these:

d(ri, rj) ∀ri, rj ∈ R

find γ a routing plan minimizing the objectivew:

minw(γ) (2.4)

subject to the constraint of equations (2.1), (2.2) and (2.3).
There are different options for the objectivew. These will be explained in section 2.4 on page

8.
Defined above is the most basic VRP, but as mentioned, several variationsexist. In the fol-

lowing sections, the ones relevant to this paper will be described.
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CHAPTER 2. MODEL

2.2 The Capacitated VRP

In many cases of vehicle routing delivery of goods is involved, and to model this, the capacitated
vehicle routing problem (CVRP) is used. As an example, a postal office needs to deliver mail to
a set of customers, which could be done by having a fleet of vehicles visiting these customers
and delivering the mail. Obviously the vehicles can only carry a certain amount of mail, thus the
number of customers on a route could potentially be limited by the car not being able to carry
any more mail — that is, the demand of the customers on a route must not surpass the capacity
of the vehicle.

Formally, in CVRP, each customerci has a certain demandq(ci), and each vehicle is identical
with a capacity ofQ. We define the demand of a route to be:

q(ρ) =
∑

ci∈cust(ρ)

q(ci)

that is, to be the accumulated demand of customers in routeρ. To model the constraint that
capacity of the vehicle imposes on a route, an extra constraint is added to theproblem:

q(ρ) ≤ Q,∀ρ ∈ γ (2.5)

It is possible generalize the CVRP to the regular VRP. If we haveq(ci) = 0,∀ci ∈ C, the
routes are no longer restricted by the demand, and we have the VRP problem. For more detailed
information on the CVRP, see Toth and Vigo [2002].

2.3 VRP with Time Windows

An important and highly usable extension to the CVRP is the use of time windows (VRPTW)
[Toth and Vigo, 2002]. These are used when one wants to model that a customer needs to be
visited within a certain time span, or one wishes to set a deadline for when the vehicles has to
return to the depot.

In VRPTW, each customerci has a service timep(ci), describing how long it takes to service
him. The service time of the depot isp(o) = 0. To model the actual window of time in which
a customer requires service, two variablese(ci) andl(ci) are defined∀ci ∈ R modeling earliest
and latest start of service, respectively. A car is allowed to arrive to a customer beforee(ci), but
servicing the customer cannot start untile(ci). The latest time that a vehicle is allowed to arrive
at a customer isl(ci). Like customers, the depot also has a time windowe(o) andl(o) assigned
to it, but these have a somewhat different meaning. The vehicles may not depart from the depot
beforee(o), and have to be back at the depot no later thanl(o). The time window for the depot
allows to limit the total allowed time of a tour, and hereby for example modeling a working day
from 8–16. The total time horizon for an instance is defined ash = l(o)− e(o).

The time windows can be handled as soft or hard constraints; called soft and strict time win-
dows, respectively. In the soft version, it is allowed to violate the time windows, but at a cost in
the evaluation function. When using strict time windows, it is forbidden to break them. In this
thesis time windows will be handled as hard constraints.
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2.4. OBJECTIVES

Like in the case of capacity, VRPTW can be generalized to the basic VRP. This is done by
settinge(ci) = 0 and l(ci) = ∞,∀ci ∈ R. As specified in section 2.1,R is the union of all
customers and the depot. Letting all customers have infinitely long time windows ensures that
they will have no effect on the routing plan.

The VRP examined in this paper includes both of the extensions described above. That is,
each customer has a certain demand, along with a time window in which service is allowed.

Beside extending the problem with different types of constraints, VRP alsovaries in what
the objective of the problem is. The objectives relevant to this thesis are examined in the next
section.

2.4 Objectives

Since vehicle routing is applicable in many different scenarios, the focus of the optimization
varies. To model the goal of the routing plan, besides fulfilling the problem constraints, an
objective function is used. The objective is, as mentioned above, to minimize theobjective
funtion:

minw(γ)

Minimizing Route Length: A very common objective function is the minimization of the
total length of the routing plan. This is relevant when one only wants to lower the travel cost
or travel time and no consideration for vehicle employment is done Rememberingthe definition
above, the length of a routing plan isd(γ), so the objective function is defined as:

w0(γ) = d(γ) (2.6)

Minimizing Employed Vehicles then Length: A significant cost for companies for
whom vehicle routing is relevant, is the salary to drivers, purchasing andmaintenance of cars,
and similar expenses. This makes limiting the number of employed cars relevant, and introduces
another widely used objective function. Here, the primary objective is to minimize the number
of vehicles and minimizing the length of the routing plan is the secondary objective. Letting
|γ| define the number of routes in the routing plan, the objective function can bemodeled as
follows:

w1(γ) = a · |γ|+ d(γ) (2.7)

where the constanta is the cost for employing a vehicle. Sometimes, it might be desirable
to have priority on minimizing the number of vehicles, but only to a certain point, atwhich the
decrease in route length makes up for the cost of adding another vehicle.This can be modeled
by settinga to a cost, allowing the desired relationship between number of vehicles and length
of routing plan. If the desired objective is to minimize|γ| disregarding length of the routing
plan, a should be set sufficiently large to render the length irrelevant in all other cases than
the comparison of two routing plans with an equal number of employed vehiclesused. More
precisely, this should be modeled as a lexicographic function which has to beminimized:
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CHAPTER 2. MODEL

w1,1(γ) =
(

|γ|, d(γ)
)

(2.8)

Minimizing Unserved Customers then Length: A less commonly used, but highly
realistic objective, is one in which we have a limited number of vehicles, and the focus is on
maximizing the number of customers served. This is used, amongst other, by Van Hentenryck
and Bent [2006]. In this case, it might not be possible to serve all the customers. As mentioned
the objective here is to serve as many customers as possible, and secondlyminimize the route
length. An example of a service in which this could be relevant is taxi-companies. These have a
fixed number of vehicles available, and on some occasions it is not possibleto serve all customers
due to the limited amount of vehicles (eg. new years eve). Note that when using this objective,
the constraint (2.3) is not used, since we want it to be legal (although undesirable) to not serve
some customers. Modeling this objective is very similar to objective (2.7):

w2(γ) = a · (−|cust(γ)|) + d(γ) (2.9)

Note that we minimize the negative cardinality of the customer setcust(γ), which equals
maximizing the number of customers in that set. Again, a constanta is used to specify the
priority of the served customers over route length. And, as withw1(γ) from (2.7), makinga suf-
ficiently large, renders the distance irrelevant unless the number of customers are the same in the
two routing plans. Again, a more correct way of modeling this would be with the lexicographic
function:

w2,1(γ) =
(

− |cust(γ)|, d(γ)
)

(2.10)

2.5 Hardness

The VRPTW treated in this thesis can, as described above, be generalizedto CVRP by setting
e(c) = 0 andl(c) = ∞,∀c ∈ R. The CVRP can be generalized to VRP ifq(c) = 0,∀c ∈ R,
which in turn can be generalized to the Traveling Salesman Problem when the number of vehi-
cles available is only 1. The TSP has been proven NP-complete [Cormen andStein, 2001] which
implies by restriction that VRP, CVRP and VRPTW are NP-complete. Under the assumption
that NP 6= P , this means that the problem is not solvable in polynomial time. While it has
neither been proven nor disproven thatNP 6= P , it is a common belief that this is the case.

It should also be emphasized that the VRPTW is a combinatorial optimization problem which
is extremely hard to solve [Van Hentenryck and Bent, 2006]. As an example, the Solomon
benchmarks [Solomon, 1987] are very well known and contains a maximum of only 100 cus-
tomers. Although considerable research in VRPTW has been made and mostalgorithms, some
very elaborate, are tested against these, optimal solutions still have not been found for several of
them.
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3 The Dynamic Vehicle Routing Problem

In Chapter 2, the standard offline problem of Vehicle Routing was described. Being offline, it
is assumed that all information about the problem is known beforehand, but this is not always
possible. Taxi services, package pickup and deliveries, police vehicles, ambulances and many
more, do not know all the destinations they have to visit, let alone travel times, timewindows or
demands. If not all the information is available from the start, the problem is defined as dynamic.
In a paper of Psaraftis [1988], the following definition is given: “A vehicle routing problem is
static if the inputs to the problem do not change, neither during execution of the algorithm
that solves it nor during the execution of the solution; a problem is considered dynamic when
inputs to the problem become known to the decision maker or are updated concurrently with
determination of the solution.”

This simple definition simply states that some input, initially unknown, has to become known
or updated during the run, but allows a great deal of freedom in the amount of input that has
to be dynamic. To be dynamic, it is not necessary that all the properties of VRP are dynamic.
Indeed, most studies carried out on the Dynamic Vehicle Routing Problem (DVRP) researches
versions in which only a specific part of the input data is dynamic, this could be travel times,
service time, demand, etc..

It is relevant to examine the DVRP, because in real life, it is common that partsof the problem
are unknown until execution of the solution. Travel times between two points for example, will
almost always be dynamic, due to traffic, weather conditions or similar, although these variations
in time might be insignificant enough, to simply ignore them and consider the problem static
(offline). Accepting the fact that part of the problem is dynamic, allows usto create algorithms
that are more suitable for solving real life instances. Lots of research has been done in the DVRP,
as far back as 1976, when W.R. Stewart presented the Delivery TruckRouting Problem with
Stochastic Demands [Stewart, 1976], and next in Cook and Russell [1978], where the authors
examined a stochastic VRPTW.

Realistically, if the exact inputs of the VRP are unknown, it is common to have some idea
of their distribution. Taking the example of travel times, it might not be possible to know the
exact times it takes to travel between two points, but it would be often be the case that one
knows what times a day the traffic is heavy or scarce, yielding longer or shorter travel times,
respectively. Having this knowledge of future events, by their distributionor approximations
hereof, makes the problem stochastic [Hvattum et al., 2007]. Obviously thestochastic VRP is a
subtype of DVRP, since not all inputs are known (precisely) until duringthe execution. Using
this stochastic knowledge has proven useful in guiding the algorithm towards good solutions.

Before looking at the advantages, and general handling, of stochasticinformation as a guide
for the algorithms, there are some important properties that need to be taken into account when
switching to a dynamic setting. These properties will be examined in the remaining part of
this chapter. In Chapter 4, the use of stochastic information to solve the dynamic VRP will be
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examined. In chapter 7, online algorithms that use no stochastic knowledge will be discussed.

3.1 Switching to a Dynamic Setting

Since some variables will be unknown in a part of the execution, it is usefulto keep track on
some additional information such as the slack between time windows and which customers have
already been visited.

Keeping track of the slack in time windows, showing how much it is possible to shift a visit
to a customer without violating its time windows, can be helpful in quickly determiningif the
prolonging of the current visit, sudden insertion of a new customer, or thelike, is feasible.
Keeping track of slack will be examined in section 3.2.

Due to the fact that the travel time, service time, demand, or whichever variables are dynamic,
may become known or change over the course of execution, the part of the routing plan that
comes after the current timet is uncertain. On the other hand, the part of the routes visited
beforet has become static, since they are in the past, and cannot be changed. Thehandling of
fixating part of the routing plan is examined in section 3.3. Finally, some usefulfunctions, in
context of the DVRP will be defined in 3.4.

3.2 Defining Slack: Earliest Departure ( δ) and Latest Arrival
(z)

When using time windows in a dynamic setting, it might be a good idea to keep two more
variables associated with each customer; earliest departureδ and latest arrivalz. During the run
of an algorithm, it is nice to know how much slack there is for each customer, ie.what is the
latest and earliest time the customer can be served without resulting in any violation of the time
window of the other customers of the route.

The earliest departureδ for a customerc, as the name suggests, is the earliest time the schedule
allows for the vehicle to finish servicing that customer. Obviously this variableis based on the

(a)

(b)

Figure 3.1: Illustrations of Earliest Departure δ(c): Two examples of earliest departures for a cus-
tomerc.
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(a)

(b)

Figure 3.2: Illustrations of Latest Arrival z(c): Two examples of latest arrivals for a customerc.

route prior to customerc and e(c). Letting c− denote the customer prior toc, the recursive
formula for earliest departure is given by:

δ(o) = e(o)

δ(c) = max
(

δ(c−) + d(c−, c), e(c)
)

+ p(c), c ∈ cust(γ)
(3.1)

For the depot, which has a service time of 0, the earliest possible time to departis the same as
the start of servicee(o). For customers the earliest start of a service forc depends on two things.
Either the previous customer was done early enough for the vehicle to reach customerc before
or ate(c) in which case service can start ate(c). If not the service can start as soon as the vehicle
has left the previous customer (c−) and reached customerc. It takesp(c) to serve customerc,
yielding δ(c). Figure 3.1 shows the two possible cases forδ(c).

Similarly, the latest arrivalz takes into account all the customers on the route following cus-
tomerc, to know what time the vehicle can arrive at the latest, and still be able to servecustomer
c without causing violations later in the route. Since we know the time that the vehicles have to
return to the depot (l(o)), the latest arrival time can be recursively defined as:

z(o) = l(o)

z(c) = min(z(c+)− d(c, c+)− p(c), l(c)), c ∈ cust(γ)
(3.2)

where the first part of the minimum function makes sure the customerc+ following c will
be reached before its latest arrival time, and the second part ensuresthat the time window for
customerc is not violated. Figure 3.2 shows two scenarios for calculation ofz(c).

3.3 Fixating Served Customers

When dealing with a DVRP, it is desirable to change the routing plan during execution of the
algorithm, to take the new/updated variables into account. To do this, it is necessary to keep
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Algorithm 1 : insertable
Data: Customer to be inserted (cins), customer immediately preceding insertion point

(cpos), route to insert into (ρ)
Result: True if insertable, False otherwise

if q(cins)+q(ρ) > Q then1

return false2

else iffixated(c+
pos) then3

return false4

else5

δ(cins)← calcδ as if cins was placed aftercpos6

z(cins)← calcz as if cins was placed aftercpos7

slackNext← z(c+
pos)-(δ(cins)+d(cins, c+

pos))8

slackPrev← z(cins)-(δ(cpos)+d(cpos, cins))9

return slackPrev > 0
∧

slackNext > 010

end11

track of which customers have already been served, since only the partof the routes beyond this
point is changeable.

This can be done by associating a flag with each customer, defining whetherit is fixated
(ie. immutable) in which case, it is not possible to change the time a vehicle visits it. Weuse
fixated(c) = true to define a customer as fixated. At any given timet, the customers for which
service has started will be fixated, and it is therefore not possible to move these to a different
place in route, or inserting new customers before them. If a customerc is fixated, all customers
cx preceding this will havefixated(cx) = true.

If a customer has already been served, we know its exact time of visit, and thereforez(c) and
δ(c) become static, reflecting the visiting time of the customer.

3.4 Other Useful Definitions and Functions

Having defined the variablesz(c), δ(c) andfixated(c), we can now define functions for check-
ing whether an insertion of a customer is possible, calculating the actual insertion, and calculat-
ing the effect of removing a customer.

Checking for Insertion: One common functionality needed is to check whether it is pos-
sible to insert a customer at a certain position in the route. The algorithm for thisis shown in
Algorithm 1. As input, the customer to insert (cins) is given, along with the customer immedi-
ately preceding the insertion point (cpos) and the routeρ. It is assumed thatcins is an unrouted
(and not fixated) customer. The first two lines simply tests that the capacity ofthe vehicle is not
surpassed when inserting the new customer.c+

pos is the customer following the insertion point.
As described above, ifc+

pos is fixated, this means that we have already visited it, and hence can-
not change the route before this point, yielding an infeasible insert (line 3 and 4). If this is not
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Algorithm 2 : updateEarliestDeparture
Data: Customerc
Result: Updated values of earliest departures (δ) from customerc and onwards until not

necessary, or depot is reached

if c 6= o then1

oldED← δ(c)2

δ(c)← p(c)+(max(δ(c−)+d(c−, c),e(c))3

if oldED 6= δ(c) then4

updateEarliestDeparture(c+)5

end6

end7

the case, we examine whether the time windows allows for the insert. In line 5 and6 δ(cins) and
z(cins) are calculated, as if the customer was inserted. Recall thatz(c) defines the latest arrival
allowed at customerc, while keeping the following part of the route feasible.δ(c) is the earliest
departure possible for customerc based on the previous part of the route. Line 6 along with line
8 and the second part of the if-statement of line 10, checks that the earliest possible arrival at
c+
pos is no later than the latest allowed arrival. In the same way, line 7 and 9, along with the first

part of the if-statement checks that the earliest possible arrival at the new customer, is no later
than the latest arrival allowed. If these requirements are fulfilled, the insertion is legal.

Updating δ and z: Before examining the algorithms for removing and inserting customers,
we need to look at two important sub procedures, namely the updating ofδ andz. As can be
seen from their definitions in equations (3.1) and (3.2), changes in the route is likely to affect
them.

In Algorithm 2, the algorithm for updating the earliest departure (δ) is given. Given equation
(3.1), the algorithm is almost self explanatory, except for a few points. Inline 2, we save the old
earliest departure of the customer. Line 3 calculates the newδ, and the two values are compared
in line 4. If they differ, the following customersδ need to be updated by a recursive call to
updateEarliestDeparture. The reason for this comparison, is that if theδ-value of
customerc is not changed, neither will theδ value of any of the following customers, since they
depend onδ(c), and are assumed valid before this algorithm. This might save some computation
time.

Algorithm 3 shows the algorithm for updating the latest arrival (z). Besides calculating a
different value, this algorithm is very similar to 2, and straightforward. Again, line 5 checks
whether the value ofz(c) has changed. In case it has not, it is not necessary to update the
z-value of any of the previous customers.

Insertion and Removal: Having defined the algorithms for updatingδ andz, we can now
look at the insertion and removal of a customer given in Algorithm 4 and 5, respectively.

For insertion, we simply place the customer on the desired position, and updateits δ andz
values. Since the functions for updating these values were recursivelydefined, the update will
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Algorithm 3 : updateLatestArrival
Data: Customerc
Result: Updated values of latest arrival (z) from customerc and onwards until not

necessary, or depot is reached

if fixated(c) = False then1

if c 6= o then2

oldLA← z(c)3

z(c)←min(z(c+)-d(c, c+)-p(c), l(c))4

if oldLA 6= z(c) then5

updateLatestArrival(c−)6

end7

end8

end9

Algorithm 4 : insert
Data: Customer to be inserted (cins), customer before insertion point (cpos)

placecins betweencpos andc+
pos1

updateEarliestDeparture(cins)2

updateLatestArrival(cins)3

Algorithm 5 : remove
Data: Customer to be removed (c)

removec from betweenc− andc+1

updateEarliestDeparture(c−)2

updateLatestArrival(c+)3

propagate to the relevant customers. It is assumed that the insertion is checked for validity (by
Algorithm 1) before a call to insertion is made.

The removal algorithm is just as simple. Here, the customer is removed from betweenc− and
c+, and theirδ andz values are updated. The reason the call toupdateEarliestDeparture
is only done onc−, is that the update will propagate toc+ via the functions recursive nature.
The same holds forupdateLatestArrival andc+.

The functions described in this section is used as sub-procedures for many of the algorithms
implemented in this thesis. The actual selection of, for example, a customer to insert (cins) as
well as a suitable insertion point (cpos) is handled by the algorithm using these sub-procedures.
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4 Online Stochastic Algorithms

As described above, one way to handle the DVRP is by online algorithms. Thisis indeed a
realistic approach and clever algorithms are developed that allow for finding good solutions. But
often one is not completely oblivious of the future events which the obliviousonline algorithms
fail to take advantage of. Stochastic knowledge can often be made available, which is what
Van Hentenryck and Bent use to guide in their algorithms presented in this chapter. When
future events are known to some extent by their probability distributions, the dynamic problem
is defined to be stochastic [Hvattum et al., 2007].

While one might not have an exact stochastic model, some stochastic knowledge can be de-
rived from historical data, or through the use of a Hidden Markov Model. Whatever method
one uses, having these probabilities available can be of great help when creating the routing
plan. The weakness of the oblivious online algorithm, is that it does not have anything to base
its decisions on, except for the requests that have been made at a givenpoint in time, and the
routing plan generated thus far. When having a stochastic problem, one can use the knowledge
of the variables to attempt to predict future requests, and use this to guide thealgorithm to better
solutions, which is exactly what Van Hentenryck et al. does.

It is easy to think up cases in which some sort of knowledge of future events are probable.
When routing police vehicles, often some neighborhoods are more dense interms of crime, more
crime is committed during the night, and wealthy neighborhoods are subject increased amounts
of break-ins, and even more so during holidays. For a package delivery company, industrial
neighborhoods will have many requests during the working hours, and certain big companies
will be more likely to request service than smaller companies.

A problem can be stochastic in several ways, depending on which variables are dynamic (and
known by their probability distributions). For the problem treated in this paper, customers arrive
dynamically as the algorithm proceeds. When a customer appears, all its variables, ie. time
windows, location, demand and service time, are known. For this thesis, stochastic knowledge
of all variables of requests is assumed available.

4.1 Algorithm Overview

In the Online Stochastic Algorithms presented by Van Hentenryck and Bent [2006] and the arti-
cles referred to in section 1.1, the stochastic knowledge mentioned above is utilized in different
ways to achieve good online solutions to the stochastic VRPTW. In this section an introductory
overview of the main algorithm will be given, along with a short description ofthe extensions to
this and a reference to the sections where these are described.

In the main algorithm, a partial “master” plan is kept which is fixated up to the current time
t. At all times, the algorithm also has a set of visible but unrouted customers. Based on some

17



4.2. GENERIC ONLINE STOCHASTIC ROUTING ALGORITHM

stochastic knowledge, the customers of the remaining time horizon]t; h] can be sampled. This is
done utilizing the stochastic knowledge, an estimate of the total number of expected customers,
and the customers currently visible. These sampled customers, visible unserved customers, and
partial plan make up a “sampled instance”. This sampled instance can be solved by a regular
offline algorithm, which of course should be modified to only change the partsof the plan which
is in the future, ie. the customers not in the partial plan. By generating, and solving several
of these sampled instances whenever time is available, the algorithm continuously has a pool of
sampled instances available. When a vehicle is idle, due to having finished service of a customer,
the decision of which customer to add to the partial plan for the idle vehicle is based on the pool
of sampled routing plans. When the next customer for the vehicle is chosen,the pool is pruned
for plans not compatible with the partial plan. In this way the construction of theroute is guided
by the sampled plans.

The generic algorithm for this is described in section 4.2, and variations of sub-procedures are
described in the following sections. Section 4.3 and 4.4 describe differentways of choosing the
next customer to serve; the Consensus [Bent and Van Hentenryck, 2004b] algorithm in section
4.3 and the Regret [Bent and Van Hentenryck, 2004c] algorithms in 4.4.

For the basic Regret and Consensus algorithms, only real customers canbe selected to be
served next. Van Hentenryck and Bent presents two different strategies for allowing the selection
of sampled customers as next, called waiting and relocation. These strategiesare compatible
with both Consensus and Regret, and are described in section 4.5.

As described in Chapter 1, one of the aims of this thesis is the extension of VanHentenryck
and Bents model to allow arbitrary positions and properties of the sampled customers. This is
described in section 4.6, and the method for pruning of customers is described in section 4.7.
The idea of sampled customers, is that they represent potential real customers. Therefore, if
a materialization of a sampled customer becomes available, this should of coursebe serviced
instead of the sampled customer. This is described in section 4.8.

4.2 Generic Online Stochastic Routing Algorithm

In this section the general stochastic online algorithm is outlined and the essential parts of it are
explained. Some of the sub-procedures will require more detailed explanations, while others
have several options for implementations. These will be discussed in the following sections,
rather than here.

The outline of the General Stochastic Online algorithm can be found in Algorithm 6. The
algorithm starts by initializing the partial plan to empty (line 1), and retrieving the requests
available from the start (line 2). Based on these, along with stochastic knowledge of the cus-
tomers, a pool of plans is generated containing a mixture of sampled and realcustomers. This is
done in thegenerateSolutions function, detailed in Algorithm 7.

In line 4, the main loop is entered, stepping one unit in time for each iteration. First, the partial
plan is fixated up until the current timet. Following this, the newly visible customers are re-
trieved (line 7), and if one or more are materializations of sampled customers in the partial plan,
this materialization is done. This is followed by a pruning of the plans that are not compatible
with this materialization (line 8-12). A discussion of the materialization of customersis done in

18



CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

Algorithm 6 : Generic Online Stochastic Algorithm
Result: Full Planγh

γ0 ← empty plan1

R0 ← customers available at start2

Γ← generateSolutions(γo, R0, t, h) //See Algorithm 73

for t← 1 to h do4

γt← γt−15

γt ← fixUntill(t)6

Rt ← customers becoming available at timet7

if materializable(Rt) then8

γt← materialize(Rt)9

Rt ← Rt\ materialized(Rt)10

Γ← prune(Γ,γt)11

end12

Pid ← getIdles(γt)13

if Pid /∈ ∅ then14

ts←chooseRequest(γt, Γ)15

for i← 1 to number of vehiclesm do16

if ρi ∈ Pid then17

ρi ← ρi : tsi18

end19

end20

Γ← prune(Γ, γt)21

end22

Γ← generateSolutions(γt, Rt, t, h)23

end24

section 4.8.
If a vehicle has no (more) customers assigned or when it has finished service at a customer, it

is considered idle. When a vehicle is idle, a decision will have to be made on which customer to
serve next. Line 13 and 14 checks whether any vehicles are idle. If this isthe case, the decision
of which customers should be assigned to the vehicles are made by a call tochooseRequest
(line 15). This is based on the current plan (γt) and the pool of sampled plansΓ. Van Hentenryck
and Bent present multiple ways of deciding which customers to serve next, and this is described
in detail in the following sections (section 4.3-4.5).

Line 16-20 extends the routes of idle vehicles with the customers selected inchooseRequest.
The pool of sampled plans is updated in line 21, by pruning plans that are not compatible with
the new requests. The mechanics of the pruning is described in more detail insection 4.7.

Finally, in line 23, more sampled plans are added to the pool of sampled solutionsfor the
remaining time by a call togenerateSolutions (Algorithm 7).

In Algorithm 7, the remaining customers are sampled (line 3), and the resulting instance is
solved using some offline algorithmO, and the result is added to the pool of solved sampled
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Algorithm 7 : GenerateSolutions
Data: Partial planγt, visible unserved customersRt, current timet, time horizonh
Result: Pool of solved sampled instancesΓ

Γ← ∅1

repeat2

A← Rt :sample(t, h)3

Γ← Γ
⋃

O(γt, A)4

until time t+15

instances (line 4). This is repeated as long as time is available.

4.3 Choosing Requests by Consensus, chooseRequest- C

We now consider one of the algorithms for choosing which customers to serve next, when a
vehicle is idle. This algorithm is called Consensus (C), and was presented in the article Bent and
Van Hentenryck [2004b]. Consensus functionality is achieved throughimplementation of the
chooseRequest function in the general stochastic online algorithm given in Algorithm 6.

The main idea is to choose the customer which most of the sampled routing plans agree on
— or rather, choose a customer based on consensus of the sampled plans. The basic idea is;
for each of the routing plans, find the customers it serves next on each route, and increment a
counter for each of these customers by one. After having looked at all the sampled routes, the
higher the counter of a customer, the more consensus there is of placing it next on a route. In
other words, the mode of the customers to serve next on each route is found. While the principle
is very simple, there are some things to take into consideration, such as ensuring the resulting
customer selections are feasible, how to handle sampled customers and how tobreak ties.

A more detailed explanation of the algorithm along with at discussion of the considerations
mentioned above is given below, in section 4.3.1.

4.3.1 Algorithm Outline and Explanation

An outline of the algorithm is given in Algorithm 8. In the first line, a setF of all visible
requests at the current timet is created. Line 2-4 initializes a counterf for each of these re-
quest to 0. ThefirstNonFixatedReal function, given a routing plan, returns the first
non-fixatedreal (ie. not sampled) customer for each route. These customers are saved inthe
set tr. For each of these customers, the score is increased by 1 (line 7-9). This is done for
all routing plans (line 5-10). In summary each decision of customer is evaluated individu-
ally and independent of the vehicles they are assigned to. Finally, in line 11,the plan which
has the set offirstNonFixatedReal that sums up to the highest score is found, and its
firstNonFixatedReal customers are returned (line 12).

A more extensive explanation of line 11 might be suitable. Each planγ is evaluated by
summing the evaluation of its next first non-fixated real customers(r1, ...rm):
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Algorithm 8 : chooseRequest-C
Data: Sampled routing plans (Γ)
Result: List of consensus customers

F←
⋃t

i=0 Ri1

foreach r ∈ F do2

f(r)← 03

end4

foreachγ ∈ Γ do5

tr ←firstNonFixatedReal(γ)6

foreach tri ∈ tr do7

f(tri)← f(tri) + 18

end9

end10

γc ← arg max(γ ∈ Γ)
∑m

i=1 f(firstNonFixatedReal(γ)i)11

return firstNonFixatedReal(γc)12

f(γ) =
m

∑

i=1

f(ri)

The planγ that has the highest value off(γ) is selected as being the best.
There are several important points to be made in connection to the Consensus algorithm. First

of all it is noteworthy how the sampled customers of the plans are handled. When looking at
which customers each plan has set to be served next, only the real customers are considered.
This is done via thefirstNonFixatedReal function, and ensures that consensus can only
be on real customers. There are also alternative strategies, where sampled customers are not
being ignored. These will be described in section 4.5. It might seem illogicalto evaluate cus-
tomers independently of routes, and then selecting the plan with the highest score. Instead, one
could evaluate customers vehicle wise. Then return the consensus for each vehicle as being
the customer with the highest score that appears as first non-fixated real customer in that route.
The reason for not doing so is to avoid infeasibility. For example, the same customer could be
chosen as consensus for two different routes, which would be both undesirable and infeasible.
By evaluating entire plans, it is ensured that a overall good, and feasible, selection of consensus
customers is made. A final thing to point out, is how ties in line 11 is handled if two ormore
plans have the same total score. This is handled by selecting one randomly.

There are some problems with the Consensus algorithm. It is qualitative, in the sense that
it increases the evaluationf of a customer by one, and ignores the actual score of the solution
the customer is part of. It is also elitist, in that it only credits the best requests, while all others
are ignored. The qualitativeness can be remedied by increasing the evaluation of a customer
by the objective function it is part of. While this makes it quantitative, according to Bent and
Van Hentenryck [2004c], this results in favoring the best requests even more, contributing to
the algorithms elitism which is undesirable. The problem with elitism, is that severalrequests
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might be almost equal in quality, but only the very best receives credit. Furthermore, and more
importantly, a request may not be the best for any sample, but might be veryrobust overall.
Attempts to address these issues were made with the Regret algorithm, described in the following
section.

4.4 Choosing Requests by Regret, chooseRequest- R

The main motivation for the Regret algorithm [Bent and Van Hentenryck, 2004c], was to address
the issues the Consensus algorithm had with elitism. Only increasing the evaluation of the
best requests is problematic, in that it does not consider almost equally good requests, or the
overall robustness of a request. This is attempted remedied by introducing the regret of a request
r. That is, an aprroximation of the difference in quality when choosingr rather than the best
customer of the vehiclei, ie. firstNonFixatedReali. In many applications, this can be
done relatively fast, and the possible gain in selecting a suitable consensusmight be worth the
extra computations. A more detailed description and algorithm outline will be given in the
following section.

4.4.1 Algorithm Outline and Explanation

An outline of the Regret algorithm is given in Algorithm 9. The algorithm is exactly the same as
the Consensus algorithm given above, except for lines 9-11, in which the evaluation of the regret
customers is made. Here, the set of customers for which to calculate regretis considered. For
each customerr in this set, if it is possible to interchanger and thefirstNonFixatedReal
of the current route (tri), the evaluation ofr is incremented (line 11). As suggested in by Bent
and Van Hentenryck [2004c], the increase in evaluation for the regretcustomerr is 1 if a feasible
swap can be found, and0 if not. In this way, it is recognized that some choices of customers are
equivalent, and furthermore, flexibility is awarded, by awarding customers that can feasibly be
swapped, thereby eliminating some of the elitism from the Consensus algorithm.

It still remains to specify for which customers to calculate regret. Although theRegret algo-
rithm has been detailed in several articles, it is unclear exactly which customers are subject to
regret calculation. There are several options, and these will be described in the following.

In Bent and Van Hentenryck [2004c], the following explanation on regret is given;

Consider the decision of choosing which customer to serve next on vehiclev and let
s be the first customer on the routeρ of vehiclev. To evaluate the regret of another
customerr on a vehiclev, the key idea is to determine if there is a feasible swap of
r ands onv, in which case the regret is zero. Otherwise, if such a swap violates the
time window constraints, the regret is 1.

This could indicate that only customers on the same route are considered. Defining ρu to be the
part of the current sampled route that is not fixated, the setRe of regret customers would be:

Re = ρu

⋂

F (4.1)
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Algorithm 9 : chooseRequest-R
Data: Sampled routing plans (Γ)
Result: List of consensus customers

F←
⋃t

i=0 Ri1

foreach r ∈ F do2

f(r)← 03

end4

foreachγ ∈ Γ do5

tr ←firstNonFixatedReal(γ)6

foreach tri ∈ tr do7

f(tri)← f(tri) + 18

foreach r ∈regretCustomers do9

if Interchange ofr andtri is possiblethen10

f(r)← f(r) + 111

end12

end13

end14

end15

γc ← arg max(γ ∈ Γ)
∑m

i=1 f(firstNonFixatedReal(γ)i)16

return firstNonFixatedReal(γc)17

Another option would be to calculate regret of visible real requests from the entire plan, that
has not yet been served. This method will make the algorithm even less elitist. Definingγu to
be the part of the plan that is not fixated, the setRe would be:

Re = γu

⋂

F (4.2)

Although consensus has only been calculated for real requests so far, strategies for accepting
sampled requests have been developed by Van Hentenryck and Bent withgood results. These
will be explained in the next section. In terms of regret, this means that it might also make sense
to consider the regret of sampled customers. In the same way as above, thiscould be done for
both the current route, and the entire plan. This yields the sets 4.3 and 4.4, respectively:

Res = ρu (4.3)

Res = γu (4.4)

The main problem with calculating regret only for the current route, is that this might not
eliminate the elitism sufficiently, since the increase in evaluation due to regrets might be very
small. Remember that the regret customers have to be interchangeable with the customertsi,
which means time windows have to fit which is more unlikely the furthertsi and the regret
customer are from each other in the plan, time wise. On the other hand, calculating regret
for the entire remaining routing plan, might result give too influence to the regret-calculation.
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Furthermore, calculating regret for all the customers in the plan is time consuming. This is
examined imperically in section 9.2.

4.5 Two Alternative Strategies: Waiting and Relocation

The Consensus and Regret algorithms described above only consider real requests when decid-
ing which customer to serve next. In Van Hentenryck and Bent [2006], two alternative strategies
are suggested in which sampled customers are also considered. There are some inherent prob-
lems when only considering real customers. Imagine, for example, that there is consensus for
some customerc at a given timet. It could be thatc’s time window is starting (e(c)) quite far
from t, in which case the assignment ofc to the route in question, would mean the vehicle will
drive toc and simply wait. Whilee(c) is likely to be reasonably close tot, the waiting time at
c might be better spent. Furthermore, if there is a high probability of a customer materializing
(ie. a customer that was sampled actually appears) in some area, this would ideally be expressed
by a consensus on serving a sampled customer in this area by the pool of sampled plans. This
information is lost when only considering real requests, and if the customerindeed materializes,
it is likely that the final result would not have been as good, as if the consensus for the sampled
customer had been taken into consideration.

The question of what to do if there is consensus of a sampled customer still remains. Van
Hentenryck and Bent presents two strategies: Waiting and Relocation, explored in the following
subsections.

4.5.1 The Waiting Strategy

The Waiting strategy is based on the recognition that in some circumstances, it might not be
desirable to rush to the first real customer, and then just wait there, like described in the above
example. Instead, if there is consensus for at sampled customer, the vehicle waits at its current
position. In this way, new requests will have a chance to appear and be taken into consideration.
This strategy is particularly useful for instances in which the bottleneck is theminimization of
traveling times, and it is relatively easy to serve all the customers. For the problems of online
stochastic vehicle routing similar to those treated in this thesis where serving all customers is
hard, Van Hentenryck and Bent documents in their book, that the Relocation strategy yields
better results. For this reason, the waiting strategy has not been implemented inconnection to
this thesis, but for details of the algorithm the reader is referred to Van Hentenryck and Bent
[2006].

4.5.2 The Relocation Strategy

While the waiting strategy addresses the problem of serving the real requests too eagerly, the
problem with simply waiting when a sampled customer is consensus, is that it is notparticularly
efficient when the objective is to serve as many customers as possible and this is hard. An
alternative strategy, dubbed Relocation, still recognizes the potential advantage in not rushing to
serve real customers, but does this by treating sampled and real customers equally, and serving
the consensus customer, even if it is sampled.
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If the consensus is a sampled customer, this means there is an increased probability for a real
customer to appear at that location. By moving to the sampled customer, the vehicle will be
closer, in case the customer appears. While this might seem drastic, Van Hentenryck and Bent
have achieved good results with this strategy. Note that this strategy is neverdesirable when the
primary objective is to minimize travel distances.

In Algorithm 10, the Relocation strategy is shown for the Consensus algorithm. The Regret
algorithm can be modified in a similar way to implement Relocation. In line 1, the default
evaluation is set tof = 0. Line 2-9 are essentially identical to the last part of the origi-
nal Consensus, except that we now do not filter out sampled customers.We call a function
firstNonFixated, rather thanfirstNonFixatedReal, and hereby take the first cus-
tomers following the partial plan, disregarding whether they are real or sampled.

Algorithm 10 : chooseRequest-CR
Data: Sampled routing plans (Γ)
Result: List of consensus customers

Set default evaluationf(c) to 0 for all c’s.1

foreachγ ∈ Γ do2

tr ←firstNonFixated(γ)3

for i ∈ 1..m do //recall m is number of vehicles4

f(tri)← f(tri) + 15

end6

end7

γc ← arg max(γ ∈ Γ)
∑m

i=1 f(firstNonFixated(γ)i)8

return firstNonFixated(γc)9

There are a few implementational considerations to be made in connection to the Relocation
strategy. Van Hentenryck and Bent have not described their approach, so the approach taken
in this thesis is based on the authors own considerations. One such consideration to make, is
how to “service” a sampled customer. The one obvious solutions would be to either simulate
servicing a real customer, by driving to it, wait until ready, stay for full service time, and then
drive on to next customer, unless of course the customer is materialized in themeantime, in
which case the vehicle immediately starts service. Another solution would be simplydrive to
the sampled b customer, and hope it materializes on the way. If this is not the case, the vehicle
simply moves on, as soon as it arrives. Both approaches have weaknesses. In the first, much
waiting is potentially involved in case the customer does not materialize, which waswhat was
attempted avoided in the first place. For the second approach, the problemis that the vehicle
might leave the customer before it is materialized.

For this thesis, the first approach was used, in which a simulation of servicetakes place at the
sampled customer. If it materialized, service is started at the customer as soonas possible. This,
of course, requires a specification of the criteria for materialization. This was not detailed by
Van Hentenryck and Bent either, but the approach used in this thesis will be described in section
4.8.

25



4.6. ALLOWING ARBITRARY LOCATIONS AND SAMPLES

4.6 Allowing Arbitrary Locations and Samples

To make the sampling realistic, it seems reasonable to allow customers to appear inall possible
locations with all possible time windows, demands and service times. However, aproblem arises
if this is allowed, since the probability of sampling two customers at the exact sameposition be-
comes smaller when the number of potential sample locations increase, ie. it is reversely propor-
tional to map size and sample resolution. This means that the probability of havingconsensus
for a sampled customer is increasingly small (especially if the map is continuous inhaving in-
finitely many locations). One way to handle this is by discretization of the map. Doing this,
one can define customers in the same discrete area, to be considered as samples representing the
same customer. This will be described in detail in section 4.6.1, below.

Despite a small e-mail correspondence with the author Pascal Van Hentenryck, it is not clear
how they handle this problem in the book, except that they do not use discretization of the map.
Even in an article of Bent and Van Hentenryck [2005], dedicated to the subject of sampling in
connection to the Consensus and Regret algorithms, it is not quite clear. Itis worth mentioning
that it is only when using the Wait and Relocation strategies that the problem arises, because in
only these cases is consensus of sampled customers involved.

It might be a deliberate decision based on two facts. If the sample base is eg.400 prede-
fined potential customers (with predefined time windows etc), each with some probability of
appearing, and the instance size is 100, this dramatically increases the probability of consensus
of sampled customers. Having a sample base of this limited size makes the Wait and Reloca-
tion strategies reasonable. If this is indeed the sampling approach used by Van Hentenryck and
Bent, defining two samples equal only when they have the exact same properties makes sense.
Having a sample base of, say, 40.000 predefined customers on a 100 customer instance, makes
these strategies less useful. Another sample base could be by having some distribution model
for different areas of the map, defining distributions of locations, time windows, demands, etc..
This approach would make the need for a discrete map even greater.

In the end, it comes to down to the nature of the problem at hand. If one considers a problem in
which customers will always appear on fixed point on the map, with sufficiently high probability
to make consensus of samples influential, the approach of Van Hentenryckand Bent could be
used. If, on the other hand, one considers a problem in which customerscan appear anywhere
on the map, and potentially with any time window, demand etc., a discretization of the map is
needed.

In any case, Van Hentenryck and Bents description of their sample base isinsufficient for
reimplementing it without making assumptions for the details.

As described in the introduction, one of the aims of this thesis is to attempt to make the
sampling mechanics more general and realistic, and modify the algorithms to handle this. As
mentioned this can be achieved by discretization of the map.

4.6.1 Discretization of the Map

As described above, the idea is to discretisize the map, into small areas. Rather than utilizing the
probability for some customer to emerge, one utilizes the probability of a customerappearing in
a discrete area. This seems realistic for eg. routing police vehicles. Here there might be areas
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with particularly high crime rate, like bars, ghettos or high-class stores. It ishighly unlikely that
any single jewelry store could have a high enough probability of being robbed to create any kind
of consensus. But if one looks at an area of, say, 15 high-class stores, there might be sufficiently
high probability, to result in a potential consensus to send a car there.

When discretizing the map, it is necessary to consider the degree of discretization. The idea
of discretization is to make a method for either identifying sampled customers as representing
the same, or group an area in which it does not matter for the routing plan which customer is
appearing (because they are so geographically close). If the discreteareas are too large, samples
appearing in the area might not represent the same customer, or customersmight be too far
away from each other for it to make sense to group them. Having areas thatare too small
make the approach more like that of Van Hentenryck and Bent, resulting in a an undesirable
low probability for sampled customers having consensus. The larger the discrete areas are, the
greater the probability of two different sampled plans have a sampled customer in the same
square, and consequently greater probability of selecting that area as consensus. In effect, this
means the a more detailed discretization, results in a higher priority of real customers. The effect
of discretization is tested and tuned in section 9.3.

When implementing the discretization some changes in the algorithms are needed. First of
all, the evaluationf(c) should now be done on the discrete areas, rather than on customer in the
Consensus and Regret algorithms with Relocation. When a consensus hasbeen found for a plan,
the consensus is for areas rather than customers and so might be based on several customers - if
relocation is used, these might include both sampled and real customers. A decision has to be
made on which one of these customers to actually serve next. For this thesis, the customers from
the routing planγ with the best evaluation are selected. Another option, when using Relocation,
would have been to prioritize real customers over sampled ones: so if the plan γ has a sampled
customercs as next for a route, but the area ofcs contains a real customercr, cr would be
selected insteadcs as consensus. This might help the algorithms to be able to serve more (real)
customers; but there are some complications. It needs to be checked whether the replacement of
cs with cr is feasible for planγ. First of all, the difference in time windows, location, service
time, etc., might make the plan invalid. Secondly, a check ofγ’s routes must be done to ensure
thatcr is not present elsewhere.

When a request has been chosen, and added to the partial route, pruning has to be made. This
is due to the fact that even though two customersa andb, from plansA andB, respectively, are
in the same discrete consensus square, only one, saya, is chosen. It might not be the case that
planB is compatible witha (replacingb with a is infeasible) due to time constraints, demand
or something similar. In this case, the planB has to be pruned from the pool of sampled plans,
even though it agreed on the consensus. Pruning of plans is describedmore thoroughly in the
following section.

4.7 Pruning of Sampled Plans

When a change has been made to the partial plan, such as adding consensus customers to the
routes, the pool of sampled plans has to be pruned for incompatible plans. There are several
ways this can be done, and it depends on whether the Relocation strategy has been used. Van
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Hentenryck and Bent prune all sampled plans that do not have the exactsame customers as next
in their route as the partial plan. If the Relocation strategy is not used, this means that the first
real request of the consensus route and sampled route should be the same. If this is the case,
all sampled requests before this on the sampled route, should be removed, thus serving the real
customers as the next. When it comes to the Relocation strategy, Van Hentenryck et al. do not
specify ther criteria for two sampled customers being the same. But if one onlyhas a limited
sample base of say 400 possible customers, the equality of two sampled customers most likely
means it is the same exact sample of the 400 available, and so it is likely to be handled in the
same way as without the Relocation strategy.

The Consensus and Regret algorithms depend on the pool of sampled plans to make good
decisions, and one risk with pruning in this manner, is that too many plans might be pruned,
resulting in a very small pool. Furthermore, having a big or continuous samplebase when
it comes to sampled customers in the Relocation and Wait strategy becomes negligible. An
alternative strategy, implemented for this thesis, is to attempt to modify the sampled plan to fit
the customer of the partial plan.

Algorithm 11 : Prune for Relocation
Data: Sampled routing plans (Γ), current partial plan (γt)
Result: Sampled routing plans (Γ)

foreachγ ∈ Γ do1

for i← 1to m do2

c← last request on vehiclei in γt3

cs ← firstNonFixated(ρi ∈ γ)4

if c = cs then5

continue6

else ifsameArea(c, cs) ∧ replacecs with c in ρi if feasible∧ cs is sampled7

then
insertc in place ofcs in routeρi of planγ8

else9

Γ← Γ\γ10

break route loop11

end12

end13

end14

In Algorithm 11 this algorithm is outlined. In the outer loop (line 1-14), each sampled plan
is examined. An inner loop (line 2-13) runs through each of the routes. First, the last request
c of the route of the partial routing plan is found, and then the first non fixated customercs of
the current plans route is found. If the two requests are the exact same,we simply continue to
the next route (line 5-6). If not, we check whether they are in the same discrete area and if it is
possible to insert customerc in the place ofcs. If this is the case, we do not have to prune the
plan, because the plans will still be compatible, as long ascs is replaced byc, which is done in
line 8. There is one more criteria for this replacement. This is due to the fact that cs could indeed
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be a sampled representation ofc in which case it makes great sense to do the replacement. Ifcs

is real, the plan is pruned because in this case it does not meet the consensus requirements, since
a real customer will never represent anything but itself.

In terms of the regular Regret and Consensus algorithm, ie. without Wait orRelocation,
the pruning is done based on first real customer in the sampled route. Although this is not
specifically described by Van Hentenryck and Bent [2006], this seems tobe the most obvious
way of implementing the pruning. So a plan is pruned if the first non-fixated real customer is
not the same as the customerc from the partial plans route.

4.8 Materialization of Customers

When using the Relocation strategy the customer selected as consensus canbe a sampled cus-
tomer. If a sampled customer is consensus, from here on referred to as awaypoint when assigned
to the partial route, it means that the consensus of the sampled plans is a sampled customer. In
other words, statistically, there is a relatively large probability for a customerappearing at that
spot, so the sampled plans agree on moving there.

The problem of having a sampled customer in the partial plan is that, since it is not real, the
vehicle sent to serve it has no actual customer to serve. Rather it has to wait at the partial cus-
tomer, until “service” is done and it is assigned a new customer to visit. In this time, the vehicle
neglects to serve any real customers which seems undesirable. Since the sampling has shown a
high probability for a customer appearing in that position and time span, the probability of a real
customer appearing with similar properties, is relatively high. If one such materialization takes
place, we need to allow for the vehicle to immediately serve this new customer and stop service
at the sampled request currently being served.

In a real life problem this would be similar to having a vehicle, eg. police car, drive to some
area where the sampled plans has indicated a high probability of service being needed, eg. an
area of bars at closing time. While the vehicle stays in that area, “serving” asampled customer,
a real customer calls for service. The vehicle then immediately leaves for this new customer.

In practice, whenever a new customer becomes visible, it is checked whether this customer
is a materialization of a current waypoint being served. This can include time window, demand
and position. If these criteria fit, the waypoint immediately stops being “served”, and the new
customer is served as the next in the partial route. Next, the sampled plans are updated to include
this new customer, and pruned if the inclusion if infeasible.

Algorithm 12 outlines the algorithm for materialization of a customer. The outer loop iterates
through the routes. We are only interested in the routes which ends in a sampled customer (line
2-4). Line 5 checks whether some criteria for materialization between this andthe new visible
customer holds. If this is the case, the actual materialization takes place. In line6-7, we set the
earliest departure forcl to the current time, allowing the vehicle to leave right away. We then
add the materializationc to the route. Line 8-18 loops through all the sampled plans, attempting
to insertc into the plan in the same manner as with the partial plan. Since the sampled plans,
unlike the partial one, have customers followingcl, they do not necessarily have room for the
materializationc, in which case they are pruned (line 12). In case a materialization has occurred,
the function stops, having successfully materialized the new customerc. If no candidate is found
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Algorithm 12 : materialize
Data: New customerc, partial routing planγ, current timet
Result: Materialization ofc if criteria is meet, pruning of infeasible sampled plans

for i ∈ 1..m do1

ρ←routei of partial planγ2

cl ← last fixated customer inρ3

if cl is a sampled customerthen4

if criteriaMet(cl, c) then5

δ(cl)← t6

addc to ρ7

foreachγs ∈ Γ do8

ρs ← routei of γs9

cs ← last fixated customer inρs10

if criteriaMet(cs, c) then11

δ(cs)← t12

addc to ρs13

else14

Γ15

end16

← Γ \ γs17

end18

break for loop19

end20

end21

end22

for materialization, the partial plan is left unchanged. Note that this function should be called
for each new visible customer.

It is worth noticing that the function prioritizes the first route in which a materialization can
occur, rather than looking through all possibilities, and materializing the customer that fits the
newly visible customer the best. A way this could be achieved, is to define a criteria of fitness
for a materialization, iterate through all routes, and materialize the customer with the best fit.

Left to define is thecriteriaMet function. In terms of location, the sample and its materi-
alization should be in the same square, as explained in section 4.6: Allowing Arbitrary Locations
and Samples.

e(c) ≤ δ(cl) (4.5)

z(c) > max(c−l + d(c−l , cl)), t) + d(cl, c) (4.6)

In terms of time, two criteria for equality are defined in equation (4.5) and (4.6). Equation
(4.5) accepts materialization only if it is ready to be served before the earliest departure of the
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sampled customer. (4.6) checks if we are able to reach the new customer, if we leave the sampled
customer as soon as possible. Note here thatc−l is the customer previous tocl. If the vehicle is
on the way to the customer, we allow it to reach the customer first to avoid the complications of
having the vehicle change directions mid-route. Else we can simply leave it at current timet.

Q ≥ q(ρ)− q(cl) + q(c) (4.7)

The last criteria to check is given in (4.7). It simply makes sure that the materialization of the
sampled customer is not violating the capacity of the vehicle.

If these criteria hold, the earliest departure of the materialized customer canbe calculated.
The incompatible sampled plans are now pruned, so only valid plans are left, with the new
materialized customer.
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5 Instances

To be able to test the algorithms described in this thesis, two different categories of instances are
used. For benchmarking the offline algorithms used as sub-proceduresin the Online Stochastic
Algorithms, the Solomon instances are used. For testing algorithms requiring stochastic knowl-
edge the instances have to be generated, since no instances with a known probability distribution
were available. The instances, along with functionality for converting them toonline instances
are described in this chapter.

To investigate the performance and quality of the offline algorithms, benchmark instances
are needed. A very common set of benchmarks to use when dealing with the VRPTW are the
Solomon instances [Solomon, 1987]. These will be described in section 5.1.

Several of the algorithms implemented in this thesis depend on the existence of stochastic
knowledge of the instance they are used on. This is not available for the Solomon instances.
Generation of instances with stochastic knowledge available is done by the use of an instance
template, implemented for this thesis, and described in 5.2. The benchmarks generated with the
use of this instance template are described in section 5.3.

The Solomon instances are offline instances, meaning that all requests areknown initially.
The instances generated by the template are also offline. To make the instances online, some
customers need to appear during the day. To achieve this, the approach of Van Hentenryck et
al. is used, in which 5 classes of hardness are defined. Offline instances are converted to online
instances by defining at what time the requests will be made, ie. what time they become visible
to the solving algorithm. The lateness of the visible times are dependent on whichclass the
online algorithm belongs to. This is be described in section 5.4.

5.1 Solomon Benchmarks

To be able to compare the efficiency of the implemented algorithms to those of others, common
benchmark instances are needed. The choice of the Solomon benchmarks[Solomon, 1987] is
based on the fact that they are some of the most common benchmarks in VRPTW, and they
challenge the algorithm in different aspects.

The Solomon instances make up a total of 56 instances and are split into 6 problem sets.
The naming convention of the instances isDTm. D defines what class the instance is;R, C
or RC. In R, the customers are positioned randomly, inC they are clustered, and inRC the
positions are a mixture of these.T can be either 1 or 2, where instances of type 1 have a
short scheduling horizon, allowing only few customers per route. Type 2instances have a long
scheduling horizon allowing many more customers being served in one route.Besides this, the
instances differ in terms of their time windows. Overall this gives a testing environment that
challenges the algorithms in many different aspects.
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For each Solomon instance, versions with 25, 50, 75 and 100 customers exists, all on a 100
by 100 unit map. In the context of this thesis, only the instances containing 100 customers are
considered.

The most recent (optimal) solutions that could be found for these instanceswere found in April
2008 [Jepsen et al., 2008]. For several of the instances, optimal solutions have not been found.
Furthermore, to be able to compare the implemented algorithm with alternatives, it isrelevant
to look at heuristic solutions found. M.M. Solomon has compiled the best solutions found by
heuristics [Solomon, 2005]. Although this was last updated March 2005, ithas not been possible
to find more recent heuristic solutions. A compilation of both optimal and heuristicsolutions
can be found in Table 6.3, page 53.

5.2 Instance Template

To be able to test the Online Stochastic Algorithms, a stochastic model or historic data needs
to be available for the instances the algorithm is solving. When solving a real life instance, this
could be accomplished by the use of historic knowledge, statistics or somethingsimilar. It has
not been possible to acquire real life data within the time frame of this thesis, so this is not an
option. Furthermore, only having a few real problems does not allow one totest the algorithm
on a variety of instance types.

For testing the algorithms on different instance types with historic data available, these algo-
rithms (and stochastic data) were generated by means of an instance template.

The basic idea is to split the map into smaller areas. For each of these, probability distributions
are defined for customers demand, time windows, ready times, etc.. When this has been set up,
the instance template can now be used to sample instances. If one wants to create an instance,
this can be done by creating a templatep. The main instance can then be generated by sampling
p and defining this as the main instance. This instance can now be solved, andp can be used to
sample instances with similar stochastic properties.

Below, the properties that needs to be defined for an instance template are explained.

General: Before looking at the specific areas, some general settings should be defined for
the instance template.

The dimensions of the map, the time horizon, location of depot, vehicles availableand vehicle
capacity are all properties of the entire template, and not the specific areas. These are not given
as probabilities but are the same in all the instances produced by the template. The reason for
this is, that realistically these parameters do not change from day to day.

The number of total expected requests for a day can be defined as an interval [a; b]. Further-
more, probabilities for few, medium or many requests are defined. These are probabilities of a
number being sampled in the first, second or third part of the interval, respectively.

Areas: The map is split into a number of areas, that are either empty, sparsely, mediumor
densely populated. These will remain the same in all generated instances, since, realistically, a
heavily populated area almost always remain heavily populated. Each areaof the map is defined
as being in one of the above mentioned categories.
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For an instance template, the probability that a customer is in a sparse, medium ordense area
is specified. Obviously empty areas will have no customers.

For each area an individual setting of constraints is defined. These areexplained below:

Ready Time: A constraint of ready times is defined for each area. There are four probabilities
defined; the probability that a customer has a start time at 0, in the first, second, and third part of
the total time horizon.

These ready times are sampled independently of customer location, and therefore it is neces-
sary to check that the sampled ready time is no later than it is possible to serve thecustomer and
get back to the depot beforeh. If this is not possible, the ready time is corrected as to allow this.
For this reason, the probabilities are skewed a little, but this is done to avoid setting infeasible
ready times.

Window Length: The window length of customers in the area is given by probabilities of
a customer having a very short, short, medium, long or very long time window. The length of
these time windows are defined as[2; 9], [10; 18], [19; 35], [36; 55] and [56; 80] percent of the
total time horizon, respectively.

If a window length extends beyond the instance time horizon, the window is simplycut off
ath. This skews the actual probabilities of customer’s window length, but was done to simplify
the instance template.

Demand: For demand, the minimuma and maximumb allowed demand for a customer is
defined. Furthermore, four probabilities are given; the probability that acustomer has a demand
of 0, a value in the first third, a value in the second third, and a value in the third third of the
[a; b] interval.

Service Time: Like demand, this constraint defines minimum and maximum service time. It
also defines probability that a customers service time is in the first, second andthird part of the
interval, along with a probability that the service time of the customer is 0.

Other: It should be mentioned that the customers are sampled independently. Therefore,
sampling one customer in a dense area for example, does not decrease thechance of another
customer appearing in that area. Furthermore, in the intervals defined above, customers are
evenly distributed. Eg. a customer who has a very short time window, will be assigned a window
length anywhere in the interval 2% - 9% at a uniform distribution.

Each of the settings described above, have asample function defined, sampling the property
according to the probabilities defined. So when a customer is sampled; first itis found in which
type of density he appears, and a random area of the given type is picked. Each property (ready
time, window length, etc. described above) of the request is then sampled according to the
settings for that specific area.
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Setting Long Short
Name 600Loose 600Tight 180Loose 180Tight
Time Horizon (h) 600(3 CPU-sec/timestep) 180(10 CPU-sec/timestep)
Customers 50± 5 50± 5
Vehicles 5 8 12 14
Window Length 2-55% 2-9% 2-55% 2-9%

(0.1/0.35/0.35/0.2/0) (1.00/0/0/0/0) (0.1/0.35/0.35/0.2/0) (1.00/0/0/0/0)
Ready Times (0.4/0.3/0.2) (0.4/0.3/0.2) (0.3/0.3/0.15) (0.3/0.3/0.15)
Service Time 5-25 5-25 5-15 5-15

(0.2/0.6/0.2) (0.1/0.4/0.5) (0.2/0.6/0.2) (0.2/0.3/0.5)
Demand 2-15 2-15 25-55 25-55

(0.2/0.7/0.1) (0.2/0.6/0.2) (0.3/0.6/0.1) (0.2/0.6/0.2)

Table 5.1: Properties of the Generated Benchmarks: Each benchmark has 50 customers, but when
sampling from template these range from 45-55. For distributions within the window length,
the reader is referred to the description in section 5.2 above. For ready times,(a/b/c)means
thata·100 percent of customers has their ready time in first third of thetime horizon.b and
c denotes the second and third part of the horizon. For servicetime and demand, the interval
given is the range of values the customers can take. The(a/b/c)-part denotes distribution,
wherea is the fraction that has a value in the first third,b the second third, etc..

5.3 Generated Benchmarks

The instance template framework described above, was used to create somebenchmark instances
for the Online Stochastic Algorithms. Obviously, the Solomon benchmarks are not useable for
this, since no stochastic data are available for the instances. A total of fourbenchmark instances
have been created, and like the Solomon instances, these are attempted made ina way so they
challenge different aspects of the solving heuristics.

The real life time horizon for the Online Stochastic Algorithms described in this thesis would
usually be very long. For example, it could run on an eight hours workingday, generating and
solving instances when time is available. This is not realistic when testing the algorithm, due to
the enormous amount of time this would require1. Instead a real life time horizon of 30 CPU-
minutes will be used. As an attempt to capture the properties of having a longerrun time, the
time consuming parts of the instances are also scaled down; number of customers, distances,
and time horizon.

All the instances have 50 customers on a 70 by 70 grid. This means that approximately 1% of
the squares are occupied by customers, like the Solomon instances. The capacity of vehicles are
200. Table 5.1 sums up the properties of the 4 instances. The two templates with atime horizon
of 600 were constructed to generate instances with long routes (appr. 15customers per route),
whereas the templates with a time horizon of 180 only allows short routes (appr. 5 customers in
each). For each type of time horizon, one template has very tight time windows (2-9% of time
horizon) and one has long time windows (2-55%). Hopefully this allows examining how well
the algorithms performs under different circumstances.

The number of vehicles available for each instance was chosen by solvingthe instance offline,

1A flawless testing of 5 settings on 5 instances would, with a time horizon of 8 hours, take 200 CPU-hours.
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while minimizing the number of vehicles employed. The resulting number plus 1 vehicle was
made available for the online solvers.

As described in section 5.2, the map is separated into fields, in which probabilities are spec-
ified for customer properties. In the generated instances, all the areas have the same setting.
Although the templates allow different areas to have different distributions of customer setting,
properly testing the influence of this is not feasible within the time frame of this thesis, so all
the areas have the same customer properties. In terms of probabilities of where on the map
customer appears, this is specified by the density of each area. Figure 5.1shows the maps for
the template2 with a time horizon of 600 and 180. The darkest areas are dense areas,medium
dark are of normal density, light are sparsely populated areas, and white areas are empty. In both
templates, customers have a 50% chance of appearing in a dense area, 30% for a normal area,
and 20% for a sparse. This statistically gives an average of 2.8 customersper dense area, 0.83
per normal and 0.29 per sparse area for the 600 instances. For the 180instances, these numbers
are 2.27, 0.714 and 0.27. Within the density categories, the exact area at which the customer
appear is chosen at random. The customers of the actual benchmarks are shown as dots on the
maps. Note that the customer locations for both the 600 instances are the same,this also goes
for the 180 instance. Note that the instances are clustered, but with some random customers
appearing, making this somewhat similar to the RC class of the Solomon instances.This choice
was made to challenge the algorithm in both clustered and randomly positioned customers.

(a) Map of instance template and bench-
mark instance, for a time horizon of 600

(b) Map of instance template and bench-
mark instance, for a time horizon of 180

Figure 5.1: Maps of the Instance Templates and Generated Benchmark Instances: Darkest areas are
densely populated, dark gray are of normal population, and light gray are sparsely populated.
White areas are empty.

2A small GUI program able to display the instance template was created for thisthesis. The screen shots from Figure
5.1 are of that GUI. As can be seen, it is possible to plot actual (multiple) instances on the map. Furthermore, the
GUI has the ability to display multiple routing plans on the map, distinctive by individual colorings.
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T1 T2 T3

H0 H0 H1 H0 H1 H2

Class 1 1.00 0.50 0.50 0.50 0.40 0.10
Class 2 1.00 0.50 0.50 0.50 0.10 0.40
Class 3 1.00 0.50 0.50 0.50 0.25 0.25
Class 4 1.00 0.50 0.50 0.20 0.20 0.60
Class 5 1.00 0.10 0.90 0.10 0.10 0.80

Table 5.2: Overview of Online Classes:Classes of distributions for visibility times of customersin the
dynamic instances.

Figure 5.2: Illustration of Online Classes: The figure shows the possible intervals for a customerc to
be visible in the intervalk = 2. He becomes visible at some point in time, uniformly drawn
from the smallest of interval A and B.

5.4 Online Instances

The Solomon instances are all offline instances and so are the instances generated by the tem-
plate. To create online versions of them, the same approach as Van Hentenryck and Bent was
used, as described in Van Hentenryck and Bent [2006] and Bent andVan Hentenryck [2004a].
The basic data of the offline instance, such as time windows, service time and location is pre-
served. The instances only need to be extended in terms of assigning a feasible time to each
customer at which he becomes available (ie. visible).

First the time horizonh is split into three periods of equal size;H1, H2, andH3. Furthermore,
we defineH0 to represent the time before the day starts (meaning that customers belongingto
H0 are visible from the beginning of the day). Each customer is then assigned toone of three
types (T1, T2 or T3), according to their due time and distance to the depot. More specifically, a
vehicle has to be able to finish servicing a customer at his due time, and travel back to the depot,
before the period is over. So a customerc is of typeT2 if and only if l(c) + p(c) + d(c, o) ∈ H2,
whereo is the depot.

A customer of typeT1 is visible inH0 (beginning of the day). TypeT2 customers become
visible in eitherH0 or H1, while T3 customers become visible inH0, H1 or H2: which period
is defined by some distribution depending on the online class (see Table 5.2).No customers are
assigned to time periodH3.
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To be able to test their algorithm on varying degree of dynamics, Van Hentenryck and Bent
created 5 classes of distributions, seen in Table 5.2. The class defines for each typeTx, the prob-
ability of which period a customer becomes available. In an instance of Class 5, for example,
a customer of typeT1 will always be visible from the start of the day. A typeT2 customer will
have a probability of 10% to become visible atH0 and 90% chance customers to become visible
at some point duringH1. Finally aT3 customer will become visible inH0 with 10% probability,
in H1 with 10% probability or inH2 with 80% probability.

Note that the later customers becomes visible the harder the instance class is. Also note that
all customers are visible at timeH3.

The time in which a customer becomes visible during some intervalHk, k ∈ 1, 2, 3 is drawn
uniformly from the interval:

[(k − 1) ·
H

3
, min(λc, k ·

H

3
− 1)] (5.1)

Whereλc = l(c)− (d(c, o)+p(c)+d(o, c)) is the time it takes a vehicle to travel to customer
c from depoto, service him, and return to the depot. An example of this is illustrated in Figure
5.2.
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6 Offline Algorithms

In the Online Stochastic Algorithms described in section 4, the stochastic VRPTWis repeatedly
transformed to an offline instance and solved. This is done by sampling the unknown part of
the instance, which has the effect that regular offline algorithms, made forVRPTW become
applicable. Only minor changes needs to be done in the parts of the routing plan they are
allowed to change: this was described in Chapter 4.

In this chapter, algorithms needed for solving the offline VRPTW will be explored. In section
6.1, algorithms for constructing solutions will be described. A brief examination of neighbour-
hoods for the VRPTW is done in section 6.2. Finally, two meta heuristics are explored in section
6.3 and 6.4 along with a comparison of these, which can be found in section 6.5.

6.1 Construction Heuristics

Route construction heuristics are used to create an initial routing plan from aset of unrouted
customers in an instance. On a well studied problem like the VRPTW, there hasbeen developed
many construction heuristics, amongst the best known is the savings heuristic by Clarke and
Wright [1964].

Although several objective functions are used in the context of this thesis, only one construc-
tion heuristic has been implemented. The objective of minimizing length (w0, see equation (2.6),
page 8), is only used to compare when testing the efficiency of the Attribute Based Hill Climber
(see section 6.3). But preliminary runs, with the implemented construction heuristic yielded very
good results, and it was found not to be necessary to implement another construction heuristic
for this purpose only.

The other two relevant objective functions are minimization of vehicles used,and minimiza-
tion of unserved customers, with minimization of route length being a secondaryobjective in
both cases. The chosen construction heuristic is a sequential method, in that it builds the routing
plan route by route, as opposed to constructing multiple routes simultaneously.This means it
fills out a route before starting the next. This is suitable for both objectives,and will be explained
in the following.

6.1.1 Impact

Braysy and Gendreau [2005a,b] presents a survey of the researchdone on non-optimal algo-
rithms for the VRPTW. In Braysy and Gendreau [2005a] route construction and local search
algorithms for VRPTW are examined. Here, a comparison of different route construction heuris-
tics is carried out, and while the results are not unambiguous in terms of which isthe best al-
gorithm, theImpact construction algorithm of Ioannou et al. [2001], seems to perform well in
general.
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TheImpact algorithm minimizes the number of vehicles and secondly the route length. It is
sequential, and based on the insertion heuristic of Solomon [1987]. First anew route is initialized
with a seed customer. Based on some criteria, a new customer is selected and inserted into this
route. This continues until it is not possible to insert any more of the unrouted customers into
the route. Then a new seed customer is selected to initialize a new route, and customers are
then added to this until no more insertions are feasible. This continues until allthe customers
have been added to a route, at which point the algorithm is done. In theImpact algorithm,
the criteria for choosing a new customer to insert and the position in which to insert it, is based
on the greedy look-ahead approach of Atkinson [1994]. In the terminology of Ioannou et al.
[2001], this criteria is called impact, and is an attempt to calculate the impact that theinsertion
of a customer has on the customers yet to be assigned, while of course taking route length into
account. Before further specifying the calculation of the impact criteria, the main algorithm,
given in Algorithm 13, will be explained.

Algorithm 13 : Impact
Data: Unrouted Customers
Result: Routing plan

U← unrouted customers1

while U /∈ ∅ do2

cseed← the customer∈ U farthest from depot3

ρ← initialize with cseed4

U← U \ cseed5

repeat6

best←∞7

foreachu ∈ U do8

feasibles← feasible positions for insertingu ∈ ρ9

foreach f ∈ feasibles do10

imp← calculate impact of insertingu at the positionf11

if imp < best then12

best← impact value, customer and position13

end14

end15

end16

make insertion as given bybest17

U← U \ best18

until best =∞19

addρ to the routing plan20

end21

return the routingPlan22

We start with a set of unrouted customers (line 1), and continue the algorithmuntil the set is
empty (line 2), meaning that we have inserted all the customers in routes. A newroute is initial-
ized with a seed customer, which is taken to be be the customer farthest away from the depot.
After the initialization of the route, the “impact” of inserting each of the unroutedcustomers
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in each of the feasible positions in the route is calculated (line 8-16), and the best of these is
inserted into the route (line 17). When no more customers can be inserted into the current route
(resulting in line 19), it is added to the routing plan, and a new seed customer isselected to ini-
tialize a new route. The result is a feasible routing plan, in which all the customers are assigned.
When the objective is to minimize the number of unserved customers, it might not be possible to
assign all of them. In this case, the algorithm simply builds routes while vehicles are available,
and then returns a plan of the constructed routes and the list of unservedcustomers.

We still have left to look at the core of the algorithm, namely the calculation of the impact the
insertion of a customer has. The main idea is to minimize the effect the insertion of acustomer
u has on the customers already in the route and the unassigned customers whilekeeping route
length short. Minimizing this effect, or impact, intuitively seems beneficial, allowinggood
insertions of the remaining customers. The main function is comprised of three parts, which we
will examine, before looking at the final function.

The first part is given in equation (6.1), wherea(cu) specifies the arrival time of the vehicle
to customercu. Recall thate(cu) was defined to be the earliest start of service for customeru.

IS(cu) = a(cu)− e(cu) (6.1)

IS(cu) is an attempt to model the slack surrounding customercu after being inserted. In other
words, this equation is meant to capture how much freedom there is for insertion of a customer
before and aftercu. A non-negative value close to zero means more slack for the insertion of
customers before and aftercu consequently giving more room for insertions.

The second part is somewhat related to (6.1), as it also attempts to capture theimpact the
insertion of the customeru has on the unrouted customers, and their future insertions. To avoid
confusion, we here stick to the terminology of Ioannou et al. [2001], anddefineJ to be the set of
unrouted customers. After inserting a customercu, a necessary condition for the vehicle to visit
some other customercj is e(cu)+p(cu)+d(cu, cj) ≤ l(cj)

∨

e(cj)+p(cj)+d(cj , cu) ≤ l(cu)1.
Selecting a customer that minimizes the non-negative difference of[l(cj)−

(

e(cu)+d(cu, cj)+
p(cu)

)

] or [l(cu)−
(

e(cj)+d(cj , cu)+p(cu)
)

] for all cj ∈ J , is expected to be a good selection.
Which of these is positive obviously depends on the order ofcj andcu. This leads to the criteria:

IU(cu) =
∑

cj∈J−cu

max
(

l(cj)− e(cu)− d(cj , cu)− p(cu), l(cu)− e(cj)− d(cu, cj)− p(cj)
)

(|J | − 1)

(6.2)
The last criteria is called internal impact, and considers the effect the insertion of customer

cu has on the route, when inserting it between customerci andcj . This criteria is comprised of

1Here, and in equation (6.2), the implementation of this thesis differs from that of Ioannou et al. [2001]. In their
article, they write:

A necessary condition for a vehicle to visit customerj after the selected for insertion customeru is
(assuming feasibility):eu + duj ≤ lj

W

ej + dju ≤ lu

. In this formula they do not take the service time of the customer into consideration. The same is the case
from their variant of the IU (equation (6.2)). Although they write “assuming feasibility”, which ensures their
statement is not incorrect, it seems to make more sense to also consider the service time in the expression and in
the calculation of IU as well.
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three parts. The first simply calculates the increase in route length:

ir1(cu, ci, cj) = d(ci, cu) + d(cu, cj)− d(ci, cj) (6.3)

The next part calculates the difference in arrival time at customerj before and after the inser-
tion of u — that is, the delay of arrival atj. This is done by:

ir2(cu, ci, cj) = [l(cj)−(a(ci)+p(ci)+d(ci, cj))]− [l(cj)−(a(cu)+p(cu)+d(cu, cj))] (6.4)

The final part of the third criteria models the time gap between the latest servicetime l(cu) of
customeru and the arrival time of the vehicle. This can be calculated as:

ir3(cu, ci, cj) = l(cu)− (a(ci) + p(ci) + d(ci, cu)) (6.5)

Putting all these together, weighted, we get an expression of what Ioannou et al. [2001] calls
local disturbance. This has to be calculated for all feasible insertions ofu and can be described
by the equation:

IR(cu) =
∑

(ci,cj)∈Ir

b1ir1(cu, ci, cj) + b2ir2(cu, ci, cj) + b3ir3(cu, ci, cj)

|Ir|
(6.6)

Whereb1 + b2 + b3 = 1, b1, b2, b3 ≥ 0, andIr is the set of all feasible insertion points of
customercu.

Putting all this together, gives us a formula for calculating the impact of inserting a customer
u into a routing plan:

Impact(cu) = bsIS(cu) + beIU(cu) + brIR(cu) (6.7)

Wherebs + be + br = 1, andbs, be, br ≥ 0.
The only thing left to discuss is the weightsb1, b2, b3, bs, be, andbr. A thorough testing of

these in Ioannou et al. [2001], shows that the changes to the parametersfrom equation (6.6)
shows statistically insignificant differences. It has therefore been decided to let these contribute
equally, settingb1 = b2 = b3 = 1

3 . The best setting of the other three parameters from (6.6)
were not as unambiguous, and depended on the size of time windows. Ioannou et al. [2001] did
the parameter tuning on the Solomon instances, and the only inference that they could make,
was that for instances with small time windowsbr should be set greater thanbs andbe to achieve
good results.

Tuning of Parameters

In the context of this thesis, the construction heuristic might often run on sampled instances in
which it is impossible to serve all customers. The parameters were tuned for minimization of
used vehicles. To examine whether a parameter setting was suitable, and stable, for both cases,
ie. sufficient and insufficient vehicles available, a race was setup. Thevalues tested are given in
Table 6.1. The values given in each line, are tested in all combinations on parameters. So for the

44



CHAPTER 6. OFFLINE ALGORITHMS

a b c
0.00 0.00 1.00
0.10 0.10 0.80
0.20 0.20 0.60
0.30 0.30 0.40
0.40 0.40 0.20
0.33 0.33 0.33
0.50 0.35 0.15

Table 6.1: Parameter Values for Testing the Impact Heuristic: For each line, except the last two, three
parameters settings are tested. For the variables(br, bs, be) the settings:(a, b, c), (c, a, b),
(b, c, a) are used. In the second to last row, parameters are equal, so this setting is tested
directly. For the last row, all combinations of the three values are tested with the given values.

.

first line, for example, the settings (br = 0, bs = 0, be = 1), (br = 1, bs = 0, be = 0) and (br =
1, bs = 0, be = 0) are tested. The parameters was tested on the Solomon benchmarks. To capture
the challenge of minimizing the unassigned customers, a run of the Attribute Based Hill Climber
(described in section 6.3) was done on the instance, with the objective to minimizethe number
of vehicles employed. The resulting vehicles found, were set as the number available for the
instance. This resulted in a set of instances, in which a preliminary testing withImpact showed
it was able to assign all the customers in around half of the instances. Hereby Impacts ability
to solve both instances where an sufficient and insufficient amount of vehicles are available were
tested.

The race was done via therace package for the R statistics program2. The race was done
unreplicated, meaning one run per setting on each instance. For elimination, the Friedman test
was used with a 95% confidence interval. The output of the race can be found in Appendix B.1.

The only parameter setting that could be eliminated was the ones from the first row of Table
6.1, in which two of the parameters had no weight, ie. influence on solution. Other than that,
no significant difference was found in the quality of the solutions, and so the choice was based
on the conclusion of Ioannou et al., that having an increased value ofbr was desirable. The
parameters forImpact is setbr = 0.40, bs = 0.30, andbe = 0.30 for use in this thesis.

6.1.2 Ejection Chains

Although theImpact algorithm performed well, in comparison to the other construction heuris-
tics examined in Braysy and Gendreau [2005a], an average of around6 customers were not as-
signed to routes (according to the race described above). To further improve the starting solution,
the use of Ejection Chains were examined.

The idea of Ejection Chains is to fit the unrouted customers into the plan, by continuously
exchanging them with routed customers until room becomes available for an insertion.

More specifically, the Ejection Chain algorithm selects an unrouted customercu, and attempts

2The R-Project: http://www.r-project.org/
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Instance
Impact Ej.Chain

Instance
Impact Ej.Chain

u length u length u length u length
C101 7 1245.39 6 1303.47 R112 19 1574.12 1 1402.74
C102 1 2073.18 1 1990.56 R201 0 2490.93 0 2490.93
C103 1 2536.32 0 2299.31 R202 0 2147.67 0 2147.67
C104 0 1978.38 0 1978.38 R203 0 2105.30 0 2105.30
C105 10 1774.93 7 1701.27 R204 0 1864.73 0 1864.73
C106 13 2153.74 5 1903.67 R205 0 2295.75 0 2295.75
C107 6 1878.72 3 1901.96 R206 0 2334.61 0 2334.61
C108 9 2423.92 3 1714.50 R207 7 2054.32 0 1937.67
C109 2 1923.78 0 1936.40 R208 0 1912.13 0 1912.13
C201 0 1297.03 0 1297.03 R209 0 2506.80 0 2506.80
C202 11 1971.08 4 1381.11 R210 0 2667.28 0 2667.28
C203 0 2259.68 0 2259.68 R211 0 2385.57 0 2385.57
C204 12 2017.02 6 1557.39 RC101 4 2079.34 3 2056.83
C205 3 1088.45 1 1013.79 RC102 2 2031.08 1 2055.36
C206 7 1551.94 0 945.44 RC103 9 1820.69 3 1727.08
C207 8 1706.94 1 1164.46 RC104 34 1679.41 10 1430.22
C208 3 1195.44 2 1169.78 RC105 11 2232.00 3 1999.04
R101 1 2004.22 1 1959.64 RC106 7 1872.85 2 1732.95
R102 1 1967.22 1 1946.28 RC107 17 1835.44 5 1651.51
R103 0 1797.63 0 1797.63 RC108 24 1762.99 4 1566.82
R104 19 1612.33 4 1456.85 RC201 0 2498.03 0 2498.03
R105 6 1853.62 0 1734.82 RC202 0 2478.15 0 2478.15
R106 4 1882.32 1 1800.63 RC203 0 2554.39 0 2554.39
R107 17 1594.06 4 1441.31 RC204 0 2345.47 0 2345.47
R108 22 1478.28 8 1327.77 RC205 0 2750.94 0 2750.94
R109 5 1772.27 2 1670.24 RC206 1 2597.89 0 2608.50
R110 11 1679.07 5 1533.38 RC207 0 3077.34 0 3077.34
R111 17 1582.34 5 1445.10 RC208 2 2755.04 0 2685.74

Table 6.2: Comparison of Running Impact With and Without Ejection Chains: The instances used
are Solomon instances with limited vehicles. In the headings,u indicates number of unserved
customers,length is route length. For each instance, the left column, namedimpact is the
impact algorithm with no ejection chain, whereasEj.Chain. are a run of impact followed by
the ejection chain algorithm.

to insert this into the routing plan in a best fit manner - the best insertion is selected. If insertion
is possible, the customer is inserted and a new choice of unrouted customer ismade. If no
insertion is possible, the algorithm searches for a routed customer,ci, that it can eject from a
route and replace withcu. The replacement yielding the best objective function is chosen. The
customerci is now unrouted, and a new iteration starts. First,ci is attempted inserted, and if
this is not possible, the algorithm searches for a customer to replace (eject). Ideally these chains
of ejections will make room for the insertion of the unrouted customers. The algorithm finishes
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when no more insertions or injections are possible.

A problem with the algorithm, is that the ejection chain might enter a loop, ejecting thesame
chain of customers. This can be remedied by a tabu list that dictates which customers are not
allowed to be ejected. When a customer is inserted into the route, this should be added to the
tabu list.

A comparison of runs of Impact only, and Impact followed by an Ejection Chain is given in
Table 6.2. Looking at the table, it is clear that the Ejection Chain heuristic improves the solution
significantly. For almost all routing plans where unserved customers are present, the algorithm
improves the plan.

6.2 Neighbourhoods

Like previously mentioned, for a well studied problem like VRP, a great amount of algorithms
have been created. This is also true for neighbourhoods in the VRP. When we look at the VRP
with time windows, the amount is limited somewhat, because the time windows do not allowa
part of a route to be reversed in terms of the ordering of the customers. Asan example of one such
neighbourhood, Figure 6.1 shows the2-opt exchange operator [Braysy and Gendreau,
2005a]. On the right figure, the dotted route has been reversed due to the neighbourhood move.
This means that customers likei + 1, i + 2, etc, that used to appear early in route (and therefore
are likely to have early time windows) will suddenly appear late in the route. Thisis potentially
conflicting with their time windows. Obviously the same problem arises with customersj, j−1,
etc, who are likely to have late time windows. After the move, these appear earlyin the route,
which might conflicted with their time windows.

Besides the comparison of construction heuristics, Braysy and Gendreau [2005a] contains a
summary of popular neighbourhoods for the VRPTW. From these, two waschosen to be imple-
mented in this thesis, namely therelocate andexchange neighbourhood. One reason for
this choice was the simplicity of these neighbourhoods. The focus of this thesis is on the online
stochastic algorithms, so two simple neighbourhoods seemed suitable. In the next two sections,
these will be described in detail.

Figure 6.1: Example of Potentially Bad Neighbourhood When Using Time Windows: Figure show-
ing the2-opt exchange operator. In the right figure, the direction of the route be-
tweeni andj − 1 have been reversed (dotted line). This means that customersthat appeared
early in the route before neighbourhood move, will now appear late and vice versa. This is
potentially conflicting with time windows.
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6.2.1 Relocate

The principle of therelocate operator is to remove one customer from a route and inserting it
somewhere else, either in the same route, or in some other route. The move is depicted in Figure
6.2. As can be seen, the way to move customeri from one position to another is to remove edges
(i− 1, i), (i, i + 1) and(j, j + 1) and inserting the edges(i− 1, i + 1), (j, i) and(i, j + 1).

As is the case of all neighbourhood moves in the VRPTW,relocate suffers under the
stricter ordering on customers due to time windows. But there is a major difference between
the impact of this ordering on the2-opt exchange operator, described above, and
relocate. In relocate all customers on the relevant routes, not countingi, will only be
affected by a shift in the time due to the removal or insertion ofi. This shift, of course, is
not irrelevant, and it is necessary to check if the time windows of the customers are violated.
This is notably different than the2-opt exchange operator neighbourhood in which
entire parts of the route is reversed, causing great change in visiting times for all the customers
involved, and hence making most neighbourhood moves infeasible.

When using the objective function given in equation (2.9), where only a limitednumber of
vehicles are available, we have a pool of unserved customers. This is handled in a straightfor-
ward way in the relocate neighbourhood. A relocate involving the unserved pool happens in
two scenarios. A customer can be removed from a route, and inserted into the pool of unserved
customers. Unlike a relocate involving two routes, there is no need to check timewindows in
this case, since the unrouted customer are not served at all, and therefore are by definition not
served in their time windows in any case. The other scenario, is taking a customer from the set
of unserved customers and inserting it into a route. In this case, the time windows of course
needs to be checked.

(a) Relocate where customeri is inserted into the same
route from which it is removed

(b) Relocate involving multiple tours. Herei is removed
from one route and inserted into another.

Figure 6.2: Figure of the Relocate Neighbourhood Move:Shows the relocate neighbourhood involving
a single or multiple routes.

48



CHAPTER 6. OFFLINE ALGORITHMS

6.2.2 Exchange

The second implemented neighbourhood is calledExchange, and as the name suggests, the
basic principle is to take two customers and exchange them. This is depicted in Figure 6.3, in
which customersi andj are exchanged. This is done by replacing the edges(i − 1, i), (i, i +
1), (j − 1, j) and(j, j + 1) with (i− 1, j), (j, i + 1), (j − 1, i) and(i, j + 1).

The exchange neighbourhood might not intuitively seem very usable, given the strict ordering
VRPTW has. When having chosen a customeri, the selection ofj is very limited, since the
timespan betweenj − 1 andj + 1 has to match the time window ofi, and furthermore allowi’s
service timep(i). In the same way, the timespan betweeni − 1 andi + 1 has to allow for the
service time ofj and fitj’s time window. In this way, the size of this neighbourhood is limited
greatly by the time windows.

Unlike the case ofrelocate, the size (|cust(ρ)|) of the routes will also remain the same
despite the number of exchanges done. This greatly decreases the number of solutions reachable
by the sole use ofexchange. On the other hand,exchange allows for some moves that might
not be possible using the relocate neighbourhood exclusively. Therefore, using two neighbour-
hoods in conjunction might allow for some good solutions, whereas an exclusive use of exchange
is not expected to be able to reach very good solutions, since the number ofcustomers in the
routes will remain the same, as will the number of unserviced customers.

As withrelocate, the set of unserved customers needs to be taken into account when using
the objective (2.9), page 9. Likerelocate, this is handled by treating the unserved set as a
route, and simply allowing exchanges between a route and the unserved set. The only difference
is that the time windows do not have to be checked in the unserved set, since these sampled
customers are obviously not being served at all.

(a) Exchange where customeri andj from the same route
are exchanged. Note thati should be precedingj in the route.

(b) Exchange involving multiple tours. Herei andj, each
from a different route, are exchanged.

Figure 6.3: Figure of the Exchange Neighbourhood Move:Figures showing the exchange neighbour-
hood for a single and multiple routes. Customersi andj are exchanged, resulting ini being
served betweenj − 1 andj + 1 andj being served betweeni− 1 andi + 1.
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Algorithm 14 : Basic ABHC algorithm for VRP
Data: Routing Planγ
Result: Routing Planγr

γr ← γ1

γb← γ2

while γb 6= null do3

IdentifyWorstAttributes(γ)4

γb← null (setw(γb) to∞)5

foreachγt ∈ N (γ) do6

if w(γt) < w(γb) ∧ Accept(γ, γt) then7

γb← γt8

end9

end10

if γb 6= null then11

γ ← γb12

UpdateAttributes(γb)13

if γb < γr then14

γr ← γb15

end16

end17

end18

6.3 The Attribute Based Hill Climber (ABHC)

The Attribute Based Hill Climber algorithm (ABHC), is a relatively new algorithm, first intro-
duced by Whittley and Smith [2004]. They applied it to the Quadratic AssignmentProblem
and Travelling Salesman Problem, for which it was shown to be competitive with existing algo-
rithms. In 2006, Derigs and Kaiser applied the heuristic to the vehicle routing problem, described
in Derigs and Kaiser [2007]. Here it was shown to be competitive with the best known heuristics
for VRP. This has been further supported by the masters thesis of Nikolajsen [2009], in which
it was applied to the Site Dependent VRP with Time Windows (SDVRPTW) and yielded very
good results.

6.3.1 The ABHC Algorithm

The ABHC heuristic is a parameter free algorithm, based on principles from Tabu Search. In
short, for a given type of problem, a set of atomic attributes (ie. edges in VRP) are chosen, for
which the objective value of the best solution they have been a part of is associated. The algo-
rithm searches through all the neighbouring solutions, picking the one with the lowest objective
function. A neighbouring move is acceptable if the new objective value improves on one or
more of the attributes that comprise the new solution (ie. routing plan). This continues until no
more acceptable moves are possible, in which case the best solution found during execution is
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returned. Initially all the attributes are initialized with the worst possible value (ie. ∞ for mini-
mization problems like VRP), except of course the attributes of the starting solution, which are
initialized with the value of the objective function. In VRP this would be all the edges between
adjecent customers in the routing plan. The algorithm is outlined in Algorithm 14.

To avoid looking through all the attributes, to see if a move improves on one of them, a short
list of the worst attributes of the current solution is maintained by theidentifyWorstAttributes
function. When checking whether to accept a new move, theaccept function compares the
new objective function value with the list of worst attributes, and if it improveson at least one of
the attributes, which is still in the solution after the neighbourhood move, the moveis accepted.
In the loop (line 6-10), the entire neighbourhoodN is examined for acceptable moves, keeping
track of the best one found. After the neighbourhood is exhaustively searched, the best move
is made (line 12), and the attributes comprising this new solution are updated according to the
objective value via theupdateAttributes function.

The ABHC overcomes the problems of escaping local minima by allowing worsening so-
lutions as long is at least one of its attributes improves. This allows it to explore the search
landscape very extensively, while still favoring better solutions, due to theBest Fit nature of
the algorithm. Every time the algorithm moves in search space, at least one property (read at-
tribute) of the algorithm will measurably improve. This requirement for a strictimprovement in
every iteration ensures that the algorithm will terminate at some point, and furthermore that the
algorithm will not visit the same solution twice.

The ABHC algorithm was chosen because it was shown to be very good atfinding solutions
for VRP, parameter free and relatively simple to implement. Due to the attribute principle, the
algorithm seems to be efficient at escaping from local minima, which is an advantage when
having clustered instances, in which there are farther between, and deeper local minima, than in
a search landscape of a non-clustered instance.

Unlike other well known algorithms, like Simulated Annealing, Tabu Search, etc., where
tuning is required to find the best setting for a specific type of problem or instance, the ABHC
is parameter free. Thus as soon as one has defined the attributes that should be used for the
given problem type, ABHC is applicable without tuning. While this is a very niceproperty in
most cases, it also means that one cannot tune the speed of the algorithm. Where a low initial
temperature would make the Simulated Annealing algorithm finish quicker, the basic ABHC has
no parameters that can be set in a way to have the algorithm end faster.

Although no tuning is required, a few design choices still have to be made when implementing
the algorithm. First of all, it has to be decided what property of the problem touse as attributes.
Whittley and Smith [2004] used the arcs or edges between customers as attributes when applying
ABHC to TSP. In Derigs and Kaiser [2007], experimentation with other properties as attributes
for the VRP was done, but it was concluded that using arcs or edges yielded the best results. In
terms of neighbourhood, relocate was chosen, and this is also supportedby Derigs and Kaiser
[2007] that showed the neighbourhood to be efficient for ABHC.

Comparison of the Offline ABHC to Solomon Benchmarks

To be able to examine the efficiency of the ABHC on VRPTW one can compare itto results
found by other algorithms on known instances. For this, the Solomon instances were used (see
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Section 5.1), as these are widely used to test VRPTW algorithms and are varied in terms of time
windows and customer positioning.

For the comparison, theImpact algorithm was used for constructing the routes. No further
improvement of the solutions done, other than the ABHC described in Algorithm14.

As described in section 5.1 optimal solutions exist for many of the instances. Very tight upper
and lower bounds have been found for many of the remaining, and heuristic results have been
obtained for all the instances. In terms of optimal solutions and bounds the most recent solutions
that could be found were reported in April 2008 by Jepsen et al. [2008].

In the context of this thesis, algorithms finding optimal solutions are considered infeasible,
due to the time required for finding solutions. To be able to compare the implementedalgorithm
with alternatives the results of ABHC are also compared to the best solutions found by heuristics.
The objective in the reported results is minimization of route length. Despite a considerable
effort to find more recent reported results, the most recent results identified by heuristics that
could be found are from the website of Solomon [2005], last updated March 2005.

In Table 6.3, the results of the ABHC are reported along with the optimal and heuristic so-
lutions. For the instances where only bounds, rather than optimal solutions,were found, these
are reported. In the two rightmost columns of the table, the percent-wise difference in solution
quality of ABHC compared to the optimal and heuristic solution are reported. Ifno optimal
solutions were available, but bounds were reported, the difference is calculated to the mean of
the bounds.

As can be seen in the table, the algorithm is definitely competitive with the currentheuristic
methods. In most cases, ABHC improves on the solutions previously reported, and in 9 cases, it
improves on the best solution obtained by considerable amounts (up to 13.71%).

Compared to the optimal solutions, the ABHC is within 5% of the optimal value. The running
times for the optimal algorithms are normalized to a P4 3.0 GHz machine. The runningtime for
ABHC is reported for a Intel Core2 6300 (1.86GHz) machine. As can be seen, in many cases for
instances of type 1 (see section 5.1, page 33), the running times of optimal solutions are actually
shorter than those of ABHC. Whether this is due to machine power or algorithmspeed has not
been possible to assess.

6.3.2 ABHC for the Consensus Algorithm and Speed-up Consider ations

In terms of using the ABHC for the purpose of this thesis, a few further considerations are nec-
essary. Unlike Derigs and Kaiser [2007], the objective in the version ofVRP considered here, is
to maximize the number of customers served, having a fixed number of vehicles. As a secondary
objective is the minimization of the route length. This means that a valid solution couldalso con-
tain a number of unassigned customers, and relocation of customers can therefore be between a
route and the list of unassigned customer. This increases the size of the neighbourhood by some
amount, but more importantly means besides having arcs as attributes, an attribute should also
be associated with a customer being unassigned.

When using ABHC as a sub-procedure in the Consensus Algorithm, the algorithm will be run
on routing plans that are partly fixated, due to parts of the customers being already visited. The
effect of this on ABHC is simply that the size of neighbourhood for a givensolution will be
decreased, due to less customers being movable. In other words, the greater parts of the routing
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Instance
ABHC Optimal Heuristics Opt. dev. Heur. dev.

Distance Time (s) Distance Time (s) Distance (%) (%)
R101 1685.34 39.21 [1634.0; 1637.7] 1.87 1645.79 3.03 2.40
R102 1484.81 135.35 1466.6 4.39 1486.12 1.24 -0.09
R103 1233.93 238.19 1208.7 23.85 1292.68 2.09 -4.54
R104 1008.15 244.32 [971.3; 971.5] 23343.92 1007.24 3.78 0.09
R105 1405.34 70.59 [1355.2; 1355.3] 43.12 1377.11 3.70 2.05
R106 1267.67 187.38 1234.6 75.42 1251.98 2.68 1.25
R107 1081.12 172.27 [1064.3; 1064.6] 1310.3 1104.66 1.57 -2.13
R108 958.12 189.87 932.1 5911.74 960.88 2.79 -0.29
R109 1162.26 123.72 [1144.1; 1146.9] 1432.41 1194.73 1.46 -2.72
R110 1083.68 167.59 1068.0 1068.31 1118.59 1.47 -3.12
R111 1081.14 207.67 [1045.9; 1048.7] 83931.48 1096.72 3.23 -1.42
R112 974.83 184.37 [946.7; 948.6] 202803.94 982.14 2.87 -0.74
C101 828.94 9.18 827.3 3.02 828.94 0.20 0.00
C102 828.94 114.09 827.3 12.91 828.94 0.20 0.00
C103 828.07 335.32 826.3 33.89 828.06 0.21 0.00
C104 848.53 535.86 822.9 4113.09 824.78 3.11 2.88
C105 828.94 14.01 827.3 5.34 828.94 0.20 0.00
C106 828.94 72.55 827.3 7.15 828.94 0.20 0.00
C107 828.94 94.14 827.3 6.55 828.94 0.20 0.00
C108 828.94 195.91 827.3 14.46 828.94 0.20 0.00
C109 828.94 335.16 827.3 20.53 828.94 0.20 0.00
RC101 1699.77 42.03 1619.8 12.39 1696.94 4.94 0.17
RC102 1503.03 85.64 1457.4 76.69 1554.75 3.13 -3.33
RC103 1288.09 112.51 [1257.7; 1258.0] 2705.78 1261.67 2.40 2.09
RC104 1165.77 195.08 [1129.9; 1132.3] 65806.79 1135.48 3.07 2.67
RC105 1550.88 56.54 1513.7 26.73 1629.44 2.46 -4.82
RC106 1400.72 89.01 [1367.3; 1372.7] 15891.55 1424.73 2.24 -1.69
RC107 1261.56 105.53 1207.8 153.8 1230.48 4.45 2.53
RC108 1160.91 141.24 1114.2 3365.0 1139.82 4.19 1.85
R201 1187.28 224.7 1143.2 139.03 1252.37 3.86 -5.20
R202 1059.45 551.07 [1027.3; 1029.6] 8282.38 1191.7 3.01 -11.10
R203 891.67 816.59 870.8 54187.4 939.54 2.40 -5.10
R204 756.37 1413.86 - - 825.52 - -8.38
R205 969.75 425.53 - - 994.42 - -2.48
R206 914.11 719.14 - - 906.14 - 0.88
R207 837.43 845.61 - - 893.33 - -6.26
R208 720.97 1317.33 - - 726.75 - -0.80
R209 883.53 563.65 854.8 78560.47 909.16 3.36 -2.82
R210 923.01 694.38 - - 939.34 - -1.74
R211 770.36 691.51 - - 892.71 - -13.71
C201 591.56 79.22 589.1 203.34 591.56 0.42 0.00
C202 591.56 353.1 589.1 3483.15 591.56 0.42 0.00
C203 591.17 620.55 588.7 13070.71 591.17 0.42 0.00
C204 590.6 1077.7 - - 590.6 - 0.00
C205 588.88 227.04 586.4 416.56 588.88 0.42 0.00
C206 588.49 335.15 586.0 594.92 588.49 0.42 0.00
C207 588.29 344.23 585.8 1240.97 588.29 0.43 0.00
C208 588.32 453.97 585.8 555.27 588.32 0.43 0.00
RC201 1287.89 260.9 [1261.7; 1261.8] 229.27 1406.91 2.07 -8.46
RC202 1109.0 499.1 1092.3 312.57 1367.09 1.53 -18.88
RC203 953.24 655.93 923.7 14917.36 1049.62 3.20 -9.18
RC204 792.84 940.62 - - 798.41 - -0.70
RC205 1189.75 388.81 1154.0 221.24 1297.19 3.10 -8.28
RC206 1101.64 408.05 1051.1 339.69 1146.32 4.81 -3.90
RC207 972.21 586.16 - - 1061.14 - -8.38
RC208 787.33 760.68 - - 828.14 - -4.93

Table 6.3: Comparison of the ABHC, Optimal and Heuristic Solutions Found on the Solomon
Benchmarks: The time unit is CPU-time in seconds. The results for optimalsolutions
and bounds are taken from Jepsen et al. [2008], published April 2008. The heuristic solu-
tion values were taken from Solomon [2005], last updated march 2005. The data was copied
from the website April 20th, 2008. The rightmost columns specify percent-wise difference to
optimal and heuristic solutions. If only bounds were available, rather than optimal solutions,
the difference was taken to the mean of the bounds. In the results reported, the objective is
minimization of distance. .
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plan that is fixated (ie. later on the day), the faster the ABHC generally is, due to the limited
neighbourhood.

For the Online Stochastic Algorithms presented in section 4, the offline algorithmis only al-
lowed to run for a limited amount of time, and therefore a mechanism for stoppingthe algorithm
is necessary. The implementation of this is very simple: when the algorithm is out of time, it
returns the current best solution (γr) found.

A potential problem with the ABHC, in terms of the Online Stochastic Algorithms, is that it
might be too slow. During the run of the Consensus algorithm, a considerableamount of instance
will have to be solved, and therefore a reasonably fast algorithm will have to be used. Although
no parameters can be tuned for the basic ABHC to speed it up, there are a few changes that can
be made to the algorithm, to attempt to make it faster. These changes will be described in the
next three sections.

6.3.3 Improving Initial Solution Quality

The quality of the initial solution might have an effect on the efficiency of the algorithm. Derigs
and Kaiser [2007] examine this, and concludes that ABHC seems robust interms of solution
quality regardless of the quality of the initial routing plan, but starting from a bad solution takes
significantly more CPU-time/iteration than when a good construction heuristic is used.

As described above, the Impact algorithm followed by an Ejection Chain algorithm yielded
very good results. But another option for attempting to create even better starting solutions, is
to follow this by a run of a Best Fit local search. This was implemented using therelocation
neighbourhood. The results are reported in Table 6.4. There is no general pattern, except that if
one setting finds better results than the other, the time taken to do this is usually increased also.
Although Derigs and Kaiser [2007] concludes that starting from a better solution saves signifi-
cant amounts of CPU-time, this is when comparing a randomly generated solutionto a run of a
construction heuristic. The solution found by the Impact heuristic followed by an Ejection Chain
is very good and so it does not make a significant difference in running time. An explanation
for the variations in solution quality could be that the ABHC start from different solutions, and
therefore does not necessarily visit the same parts of the search space. The decision was taken
not to use a local search before running the ABHC algorithm.

6.3.4 ABHC with First Fit

Another option, also implemented by Nikolajsen [2009], is to change the algorithm to run by a
First Fit principle. Rather than searching the entire neighbourhood in each iteration and taking
the best acceptable improvement, one could do a move in the neighbourhood as soon as a move
improving the best solution is found. This does not guarantee that the algorithm becomes faster,
since using first fit makes it move slower towards local minima. On the other hand, in general
the algorithm will search a smaller part of the neighbourhood, which is a substantial increase in
speed for each iteration. In summary, using first fit means an increase in speed for each iteration,
but at the cost of a less steep movement towards local minima. The algorithm is outlined in
Algorithm 15. It is essentially the same as the regular ABHC except that it restarts its search
every time a solution is found that improves on the overall best.
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Instance
Construction Constr. and LS

constr. ABHC cpu(s) constr. ABHC cpu(s)
u length u length (s) u length u length (s)

R101 1 1959.6 0 1661.2 12.6 0 1753.4 0 1661.2 12.0
R102 1 1946.3 0 1507.0 56.7 0 1588.8 0 1488.3 78.3
R103 0 1797.6 0 1250.6 122.3 0 1368.4 0 1249.3 126.3
R104 4 1456.8 0 993.3 97.3 2 1146.1 0 993.3 96.2
R105 0 1734.8 0 1415.4 19.8 0 1533.3 0 1405.1 18.9
R106 1 1800.6 0 1320.5 57.4 1 1461.0 0 1279.0 70.1
R107 4 1441.3 0 1095.0 56.6 3 1252.0 0 1095.0 56.3
R108 8 1327.8 0 949.5 83.3 2 1057.0 0 949.5 82.3
R109 2 1670.2 0 1165.0 58.2 2 1460.2 0 1165.0 58.0
R110 5 1533.4 0 1076.2 78.8 3 1393.6 0 1076.2 78.6
R111 5 1445.1 0 1131.0 93.4 5 1270.2 0 1131.0 92.8
R112 1 1402.7 0 982.0 98.2 1 1198.5 0 982.0 97.8
R201 0 2490.9 0 1235.1 116.7 0 1382.8 0 1192.9 108.6
R202 0 2147.7 0 1110.8 290.5 0 1383.0 0 1110.8 290.3
R203 0 2105.3 0 909.1 534.1 0 1269.1 0 909.1 537.2
R204 0 1864.7 0 755.6 895.0 0 968.8 0 755.6 891.2
R205 0 2295.7 0 996.8 250.7 0 1171.1 0 996.8 273.5
R206 0 2334.6 0 894.3 628.2 0 1159.5 0 894.3 585.0
R207 0 1937.7 0 815.0 779.8 0 960.6 0 812.8 784.2
R208 0 1912.1 0 707.7 898.5 0 885.5 0 707.7 895.2
R209 0 2506.8 0 864.1 353.8 0 1041.9 0 864.1 350.4
R210 0 2667.3 0 932.8 415.5 0 1150.6 0 932.8 412.2
R211 0 2385.6 0 763.9 592.7 0 933.5 0 763.9 593.0
C101 6 1303.5 5 1115.3 3.3 5 1221.8 5 1115.3 2.5
C102 1 1990.6 0 995.0 28.5 1 1639.9 0 995.0 28.5
C103 0 2299.3 0 859.4 148.6 0 1496.1 0 859.4 147.2
C104 0 1978.4 0 824.8 363.5 0 1337.6 0 824.8 362.9
C105 7 1701.3 3 1253.8 10.9 7 1640.6 5 1341.9 9.2
C106 5 1903.7 0 893.1 15.2 5 1798.4 0 893.1 15.4
C107 3 1902.0 0 969.0 18.2 3 1679.4 0 969.0 18.2
C108 3 1714.5 0 1051.6 28.1 3 1561.1 0 1051.6 28.2
C109 0 1936.4 0 828.9 131.6 0 1813.1 0 828.9 132.1
C201 0 1297.0 0 591.6 44.2 0 860.6 0 629.7 30.6
C202 4 1381.1 0 985.6 14.8 4 1336.5 0 985.6 14.8
C203 0 2259.7 0 620.3 372.5 0 1398.4 0 620.3 371.5
C204 6 1557.4 0 590.6 520.7 2 1133.4 0 590.6 513.7
C205 1 1013.8 1 770.9 12.5 1 964.9 1 766.6 12.8
C206 0 945.4 0 672.1 21.9 0 903.9 0 672.1 22.1
C207 1 1164.5 0 588.3 52.4 1 1038.6 0 588.3 52.4
C208 2 1169.8 0 678.5 46.5 0 1002.9 0 678.5 42.8
RC101 3 2056.8 0 1700.3 13.3 3 1855.8 0 1700.3 12.3
RC102 1 2055.4 0 1478.0 34.2 0 1911.7 0 1478.0 36.0
RC103 3 1727.1 0 1321.1 63.7 2 1345.5 0 1321.1 66.2
RC104 10 1430.2 0 1158.5 92.3 7 1332.2 0 1158.5 91.7
RC105 3 1999.0 0 1644.3 10.6 2 1843.7 0 1644.3 10.6
RC106 2 1732.9 0 1430.6 26.4 0 1499.6 0 1437.7 19.8
RC107 5 1651.5 0 1321.0 35.0 3 1408.2 0 1307.3 50.3
RC108 4 1566.8 0 1151.9 49.8 3 1445.2 0 1151.9 49.6
RC201 0 2498.0 0 1369.8 94.8 0 1687.5 0 1369.8 98.5
RC202 0 2478.1 0 1234.2 234.2 0 1511.4 0 1241.6 223.1
RC203 0 2554.4 0 1003.8 393.2 0 1219.9 0 1003.8 394.7
RC204 0 2345.5 0 804.2 716.9 0 1063.7 0 804.2 712.3
RC205 0 2750.9 0 1260.6 220.1 0 1504.8 0 1260.6 222.4
RC206 0 2608.5 0 1125.2 180.9 0 1420.3 0 1111.0 174.0
RC207 0 3077.3 0 970.8 494.7 0 1301.3 0 970.8 481.1
RC208 0 2685.7 0 793.2 456.8 0 1038.3 0 793.2 455.1

Table 6.4: Comparison of the ABHC Run With Different Quality of Starting Solutions: ABHC
normal is run with the Impact construction algorithm only.ABHC improvedhas the Impact
solution improved by a Best Fit local search with the relocate neighbourhood. The time unit
is CPU-time in seconds. For ABHC columns, the time given is the total running time for
construction heuristicand ABHC. The columns denotedu denote the number of unserved
customers. 55
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Algorithm 15 : ABHC algorithm for VRP with First Fit
Data: Routing Planγ
Result: Routing Planγr

γr ← γ1

while truedo2

IdentifyWorstAttributes(γ)3

foreachγt ∈ N (γ) do4

if Accept(γ, γt) then5

γ ← γt6

UpdateAttributes(γ)7

if γ < γr then8

γr ← γ9

restart while10

end11

end12

end13

break while14

end15

Results of First Fit

The ABHC using the First Fit principle was compared with ABHC using Best Fit.The results
are reported in Table 6.5. The three rightmost columns show the differences, where bold results
denote those in which Best Fit gave the best results. Although the solutions are not unambiguous,
the choice of algorithm setting to use is Best Fit. Amongst other, this is based onBest Fit finding
two solutions with less unserviced customers, as opposed to First Fit, not finding any solutions
with fewer unserved customers than Best Fit.

6.3.5 Other Ways of Speeding Up ABHC

In the basic algorithm, all the attributes are initialized with∞ except, of course, those that are
part of the starting solution. This allows the algorithm to traverse even the global maximum, and
thereby also reach different local minima. While this is desirable for searching as much of the
search landscape as possible, it also potentially increases the running time of the algorithm, due
to the time consumed by searching irrelevant parts of the search landscape. Instead, one could
initialize the attributes with, for example, the objective value of the initial solutionx. This would
mean that the algorithm would not be allowed to traverse any solutions with an objective value
greater thanx. This obviously limits the ways the algorithm can traverse the search landscape,
and therefore could also limit the running time of the algorithm. The pitfall of this change, is
that having anx of too low value, would limit the searched landscape by too much, and having
a very largex would have too little effect to affect the execution time.

For testing this, runs of the ABHC was made with 4 different starting values. Calling the
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Instance
Best Fit First Fit Diff.

u length cpu(s) u length cpu(s) u length cpu(s)

R101 0 1661.21 13.04 0 1676.21 12.70 0 -15.00 0.34
R102 0 1507.03 60.41 0 1482.69 85.86 0 24.34 -25.45
R103 0 1250.59 127.32 0 1244.33 85.78 0 6.26 41.54
R104 0 993.30 100.81 0 990.82 111.80 0 2.48 -10.99
R105 0 1415.37 20.58 0 1478.80 10.73 0 -63.43 9.85
R106 0 1320.47 59.81 0 1262.38 103.27 0 58.09 -43.46
R107 0 1094.99 59.22 0 1104.62 81.97 0 -9.63 -22.75
R108 0 949.54 86.44 0 954.38 66.39 0 -4.83 20.05
R109 0 1164.99 60.55 0 1183.66 62.62 0 -18.67 -2.07
R110 0 1076.16 81.80 0 1090.69 71.24 0 -14.53 10.56
R111 0 1131.04 96.88 0 1093.80 102.17 0 37.25 -5.29
R112 0 981.98 101.13 0 975.14 108.17 0 6.84 -7.04
R201 0 1235.11 117.30 0 1221.88 92.29 0 13.23 25.01
R202 0 1110.81 291.99 0 1110.17 254.01 0 0.64 37.98
R203 0 909.09 531.33 0 901.20 655.14 0 7.89 -123.81
R204 0 755.61 918.19 0 763.38 768.92 0 -7.78 149.27
R205 0 996.76 257.33 0 979.60 282.51 0 17.16 -25.18
R206 0 894.33 643.46 0 909.12 506.77 0 -14.79 136.69
R207 0 814.99 785.11 0 824.06 687.14 0 -9.07 97.97
R208 0 707.71 905.11 0 730.32 979.72 0 -22.61 -74.61
R209 0 864.14 354.97 0 868.58 375.37 0 -4.44 -20.40
R210 0 932.83 414.83 0 930.40 467.66 0 2.43 -52.83
R211 0 763.93 588.74 0 757.86 668.92 0 6.07 -80.18
C101 5 1115.31 3.30 5 1115.31 2.44 0 0.00 0.86
C102 0 995.01 29.51 0 1141.87 46.99 0 -146.86 -17.48
C103 0 859.37 147.84 0 828.07 121.13 0 31.30 26.71
C104 0 824.78 359.72 0 852.59 299.85 0 -27.81 59.87
C105 3 1253.75 10.73 5 1401.45 7.38 -2 - 3.35
C106 0 893.14 15.12 0 1181.40 15.82 0 -288.27 -0.70
C107 0 968.96 18.58 0 1067.77 12.23 0 -98.81 6.35
C108 0 1051.56 28.66 0 959.74 34.03 0 91.82 -5.37
C109 0 828.94 130.05 0 881.05 114.17 0 -52.11 15.88
C201 0 591.56 44.36 0 591.56 10.34 0 0.00 34.02
C202 0 985.63 14.81 0 964.18 19.13 0 21.45 -4.32
C203 0 620.30 377.55 0 591.17 434.98 0 29.12 -57.43
C204 0 590.60 525.00 0 823.15 298.67 0 -232.55 226.33
C205 1 770.90 12.59 1 770.90 12.46 0 0.00 0.13
C206 0 672.10 22.03 0 588.49 37.13 0 83.60 -15.10
C207 0 588.29 52.66 0 588.29 43.11 0 0.00 9.55
C208 0 678.50 46.39 0 678.50 53.22 0 0.00 -6.83
RC101 0 1700.30 13.14 0 1715.34 12.04 0 -15.04 1.10
RC102 0 1477.96 33.71 0 1494.05 69.83 0 -16.09 -36.12
RC103 0 1321.09 62.80 0 1278.30 51.39 0 42.79 11.41
RC104 0 1158.52 90.97 0 1183.88 69.34 0 -25.37 21.63
RC105 0 1644.31 10.32 1 1716.16 10.57 -1 - -0.25
RC106 0 1430.55 25.85 0 1406.81 16.70 0 23.74 9.15
RC107 0 1320.98 33.92 0 1294.32 31.41 0 26.66 2.51
RC108 0 1151.89 48.75 0 1163.76 57.24 0 -11.88 -8.49
RC201 0 1369.85 94.05 0 1405.97 76.52 0 -36.12 17.53
RC202 0 1234.16 233.35 0 1197.91 262.32 0 36.25 -28.97
RC203 0 1003.80 390.61 0 969.97 553.39 0 33.83 -162.78
RC204 0 804.18 730.25 0 791.40 740.60 0 12.78 -10.35
RC205 0 1260.64 223.45 0 1265.62 186.23 0 -4.98 37.22
RC206 0 1125.23 184.04 0 1126.25 193.73 0 -1.02 -9.69
RC207 0 970.78 494.97 0 996.38 433.18 0 -25.60 61.79
RC208 0 793.19 456.94 0 782.66 507.96 0 10.53 -51.02

Table 6.5: Comparison of the ABHC using First Fit and Best Fit: The labelu in the column header,
denotes unserved customers. The rightmost column reports the difference in the quality of the
two settings. Results reported in bold are those in which Best Fit performed best.

.
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objective value of the starting solutiona, tests was made with initializing the attributes to0.95 ·
a, 1.00 ·a, 1.05 ·a and1.15 ·a. These were compared to runs with the regular initial value of∞.
The starting solution was found by a run ofImpact followed by the Ejection Chain algorithm.
The result can be found in Table 6.6.

As can be seen, a setting of0.95 ·a objective value is extremely fast, but the results are equally
bad. Oddly, for the rest of the settings the running times are worse than those of the∞ setting,
even though this finds betters solutions. Further tests were made with settings of 1.50 · a and
2.00 · a, and although these yielded better results than the initial solutions displayed in the table,
the solutions of∞ were still superior in terms of both time and quality. It has not been possible
to diagnose why this happens. It might have something to do with the freedom of movement in
the search landscape. The standard ABHC is allowed to move freely in the search landscape,
thus very quickly locating good local optimums. This freedom is greatly limited by having an
lower attribute value, since ABHC have to find alternative ways from minima to minima, not
exceeding the attribute value. This means that the movement in the search landscape will be
slower, and attributes not in the start solution will be involved in a solution verylate in the
search process. Alternatively, with the standard ABHC, the attributes mightbe involved in a
solution very fast, due to the freedom of movement.

Obviously, the choice for initial value of edges is∞.

6.4 Iterated Local Search (ILS)

AlthoughABHC finds good solutions, its long runtime potentially makes it unsuitable as a sub-
procedure for the online stochastic algorithms described above - solving the dynamic VRPTW
would simply take too long with full runs of ABHC. Rather, an efficient algorithm is necessary,
since the runtime has to be short for it to be usable.

The choice ofIterated Local Search (ILS) [Hoos and Sẗutzle, 2005] is amongst
other based on this. ILS is a meta heuristic based on regular local search.The idea is to solve
an instance with a local search to reach a local optimum. As an escape strategy, the solution is
permuted and a new local search is made. This is continued until some criteria (eg. a time limit)
is met. At this point, the algorithm returns the best solution found. The permutation allows the
algorithm to escape the local minimum so the following local search is able to reach a new local
minimum.

Although briefly examined by Van Hentenryck and Bent [2006], it is not clear what the best
balance is between speed in offline algorithm and quality of offline solutions,when using it for
the Online Stochastic Algorithms. The speed affects the number of instances that can be sampled
and solved and the number of optimizations on each instance. The fact that arun of iterated local
search can be made arbitrarily long (by allowing arbitrarily many search/permutation cycles),
makes ILS very suitable for examining the above mentioned balance. The fastest possible run of
ILS is to simply do one local search and return the solution as the result. This iseffectively the
same amount of time as a local search. For each permutation/local search cycle, the algorithm
will take longer, but also have an increased chance of returning an improved result.
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Instance
Sol. Value·0.95 Sol. Value·1 Sol. Value·1.05 Sol. Value·1.15 ∞

u length cpu(s) u length cpu(s) u length cpu(s) u length cpu(s)

C101 5 1221.79 2.10 5 1142.97 3.84 5 1142.97 5.00 5 1142.97 6.62 5 1115.31 2.34
C102 1 1990.56 0.02 1 1426.83 10.72 1 1426.83 36.08 1 1426.83 38.26 0 995.01 28.74
C103 0 2299.31 0.02 0 870.32 205.14 0 870.32 442.87 0 870.32 459.93 0 859.37 149.03
C104 0 1978.38 0.03 0 824.78 481.36 0 824.78 1237.42 0 824.78 1319.75 0 824.78 365.99
C105 7 1701.27 0.03 7 1638.30 2.51 7 1638.30 5.21 7 1638.30 5.40 3 1253.75 10.75
C106 5 1903.67 0.02 5 1798.38 1.78 5 1798.38 2.50 5 1798.38 2.62 0 893.14 15.30
C107 3 1901.96 0.02 3 1633.59 3.78 3 1633.59 5.75 3 1633.59 7.14 0 968.96 18.25
C108 3 1714.50 0.03 0 1051.56 128.42 0 1051.56 174.85 0 1051.56 188.30 0 1051.56 28.61
C109 0 1936.40 0.03 0 828.94 166.81 0 828.94 496.71 0 828.94 531.12 0 828.94 132.62
C201 0 715.07 20.82 0 715.07 7.96 0 715.07 19.25 0 715.07 20.21 0 591.56 43.12
C202 4 1381.11 0.02 4 1336.03 1.71 0 985.63 77.52 0 985.63 81.58 0 985.63 14.54
C203 0 2259.68 0.02 0 620.30 447.25 0 620.30 750.19 0 620.30 994.33 0 620.30 373.41
C204 6 1557.39 0.01 0 590.60 1162.65 0 590.60 1552.41 0 590.60 1832.28 0 590.60 527.03
C205 1 1013.79 0.02 1 964.86 1.27 1 964.86 3.27 1 964.86 3.53 1 770.90 12.56
C206 0 945.44 0.02 0 672.10 21.35 0 672.10 44.73 0 672.10 47.56 0 672.10 21.89
C207 1 1164.46 0.02 0 588.29 73.69 0 588.29 175.02 0 588.29 184.84 0 588.29 52.13
C208 2 1169.78 0.03 0 678.50 82.82 0 678.50 237.29 0 678.50 245.81 0 678.50 46.41
R101 1 1959.64 0.18 0 1661.21 21.70 0 1661.21 53.38 0 1661.21 57.89 0 1661.21 12.15
R102 1 1946.28 0.02 0 1507.03 109.71 0 1507.03 111.36 0 1507.03 111.32 0 1507.03 60.68
R103 0 1797.63 0.03 0 1279.13 113.80 0 1279.13 252.82 0 1279.13 391.24 0 1250.59 130.28
R104 4 1456.85 0.02 0 993.30 355.35 0 993.30 614.41 0 993.30 604.44 0 993.30 103.28
R105 0 1734.82 0.02 0 1415.37 29.52 0 1415.37 68.03 0 1415.37 70.82 0 1415.37 20.93
R106 1 1800.63 0.02 0 1320.47 86.13 0 1320.47 208.56 0 1320.47 221.10 0 1320.47 60.74
R107 4 1441.31 0.02 0 1094.99 236.53 0 1094.99 318.10 0 1094.99 328.00 0 1094.99 60.37
R108 8 1327.77 0.02 0 949.54 317.32 0 949.54 445.59 0 949.54 445.71 0 949.54 88.10
R109 2 1670.24 0.04 0 1164.99 119.50 0 1164.99 376.05 0 1164.99 395.40 0 1164.99 61.31
R110 5 1533.38 0.02 0 1076.16 309.42 0 1076.16 424.45 0 1076.16 459.40 0 1076.16 83.78
R111 5 1445.10 0.02 0 1131.04 345.12 0 1131.04 511.06 0 1131.04 606.87 0 1131.04 97.80
R112 1 1402.74 0.02 0 981.98 181.81 0 981.98 412.83 0 981.98 440.84 0 981.98 103.48
R201 0 2490.93 0.14 0 1246.64 108.59 0 1246.64 246.04 0 1246.64 357.32 0 1235.11 115.42
R202 0 2147.67 0.04 0 1110.81 412.77 0 1110.81 812.95 0 1110.81 1228.36 0 1110.81 289.00
R203 0 2105.30 0.03 0 909.09 699.64 0 909.09 1174.84 0 909.09 1668.70 0 909.09 525.90
R204 0 1864.73 0.02 0 755.61 1080.07 0 755.61 2164.19 0 755.61 2243.73 0 755.61 909.69
R205 0 2295.75 0.02 0 996.76 340.87 0 996.76 652.22 0 996.76 643.75 0 996.76 256.09
R206 0 2334.61 0.02 0 894.33 778.49 0 894.33 1388.98 0 894.33 1886.00 0 894.33 635.13
R207 0 1937.67 0.01 0 814.99 897.43 0 814.99 1393.04 0 814.99 1444.39 0 814.99 789.06
R208 0 1912.13 0.04 0 707.71 1076.80 0 707.71 1959.21 0 707.71 2054.67 0 707.71 917.18
R209 0 2506.80 0.02 0 864.14 438.49 0 864.14 802.15 0 864.14 834.44 0 864.14 355.68
R210 0 2667.28 0.01 0 932.83 514.32 0 932.83 910.91 0 932.83 1255.44 0 932.83 417.55
R211 0 2385.57 0.02 0 763.93 678.58 0 763.93 1070.47 0 763.93 1102.87 0 763.93 593.57
RC101 3 2056.83 0.20 0 1700.30 43.43 0 1700.30 77.81 0 1700.30 62.57 0 1700.30 12.81
RC102 1 2055.36 0.02 0 1545.80 38.26 0 1545.80 83.00 0 1545.80 86.97 0 1477.96 36.19
RC103 3 1727.08 0.00 0 1321.09 195.97 0 1321.09 197.33 0 1321.09 375.62 0 1321.09 66.86
RC104 10 1430.22 0.03 0 1158.52 314.87 0 1158.52 521.19 0 1158.52 462.49 0 1158.52 96.57
RC105 3 1999.04 0.03 0 1644.31 23.73 0 1644.31 43.58 0 1644.31 37.70 0 1644.31 11.02
RC106 2 1732.95 0.03 0 1446.01 36.78 0 1446.01 98.30 0 1446.01 102.60 0 1430.55 27.73
RC107 5 1651.51 0.02 0 1320.98 123.47 0 1320.98 182.80 0 1320.98 226.10 0 1320.98 36.28
RC108 4 1566.82 0.03 0 1151.89 171.20 0 1151.89 308.32 0 1151.89 306.07 0 1151.89 52.38
RC201 0 2498.03 0.12 0 1369.85 144.92 0 1369.85 300.15 0 1369.85 299.99 0 1369.85 92.16
RC202 0 2478.15 0.02 0 1234.16 350.19 0 1234.16 673.19 0 1234.16 1018.23 0 1234.16 233.29
RC203 0 2554.39 0.02 0 1003.80 474.47 0 1003.80 802.27 0 1003.80 818.73 0 1003.80 391.68
RC204 0 2345.47 0.02 0 804.18 788.85 0 804.18 1158.29 0 804.18 1609.18 0 804.18 727.06
RC205 0 2750.94 0.02 0 1260.64 334.73 0 1260.64 695.13 0 1260.64 1004.92 0 1260.64 223.43
RC206 0 2608.50 0.01 0 1125.23 251.69 0 1125.23 494.43 0 1125.23 526.24 0 1125.23 183.57
RC207 0 3077.34 0.02 0 970.78 626.40 0 970.78 1091.04 0 970.78 1594.38 0 970.78 502.24
RC208 0 2685.74 0.02 0 793.19 592.65 0 793.19 996.53 0 793.19 1444.73 0 793.19 463.61

Table 6.6: Comparison of the ABHC with Different Initial Val ues for attributes: Sol. Valueis the
objective value of the starting solution. The ABHC was run with this value multiplied by 0.95,
1, 1.05 and 1.15, and also with the original setting of∞. The starting solution was created
using a run ofImpact followed by a run of the Ejection Chain algorithm. Labelu in the
column header denotes unserved customers.

.
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6.4. ITERATED LOCAL SEARCH (ILS)

6.4.1 Base Algorithm

As described above, the basic idea of Iterated Local Search is to escape a local optimum, by
permuting the solution followed by a new local search. Assuming the solution was permuted into
a suitable region of the search space, there is a chance that the algorithm might find a new local
optimum. The base algorithm is described in Algorithm 16 below, while the implementation of
the actual permutation will be described afterwards.

Algorithm 16 : IteratedLocalSearch
Data: routingPlanγ, timeLimit
Result: Routing planγb

γb← γ;1

while time spent< timeLimit do2

γ ← permute(γb)3

γ ← localSearch(γ)4

if w(γ) < w(γb) then5

γb← γ6

end7

end8

returnγb9

The algorithm takes a starting solution and a time limit as arguments. This solution is saved as
the current best (line 1). Following this, the main loop (line 2-8) is entered, running for as long
as allowed by thetimeLimit argument. The core of the algorithm is line 3 and 4, in which
the current best solution is first permuted, and then guided to a local optimumby a local search.
If an improvement is found, this new solution is saved as the best (line 5-7).If the time limit has
not been reached, the while loop ensures the continued running of the algorithm. When the time
limit is reached, the loop is terminated, and the best solution found thus far is returned (line 9).

This is the most basic version of the algorithm, and it could be extended in several ways.
One common modification is to improve the condition of the while loop. This could be done
by checking the number of iterations done without finding improvements. If thealgorithm is
not able to find improvements in a long series of permutation/search cycles, chances are it is not
worth the time to keep trying, at least not using the same permutation method.

As can be seen above, the basic algorithm is very simple, and the actual work is done in its
two important subroutines; the permutation and local search. The choice oflocal search will be
described in section 6.4.2. The options for permuting the solution is describedbelow.

Permutation by Neighbourhood If the local search algorithm, used in ILS, is using a sin-
gle neighbourhood, the permutation could consist of a series of moves in another neighbourhood.
These moves should not be restricted by a requirement of improving the objective function, but
rather serve as a way of scrambling the solution in a way the local search neighbourhood is not
able to. Since the defined neighbourhoods used in this project only move between feasible solu-
tions, the permutation will result in a feasible solution, and hence the local search will of course
also result in one.
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A potential problem with this permutation, is that the permuting neighbourhood mightnot be
able to scramble the solution sufficiently. As an example, we let therelocation neighbour-
hood be used in the local search. If the found solution is very tight in terms of the slack in visiting
times, so each customerci is visited just beforel(ci), this allows very few, if any, valid moves
for theexchange neighbourhood. This means that the permutation will not be scrambled very
much, and consequently ILS is less likely to explore many local optima. Furthermore, finding
valid moves for permutation might be time consuming, which is not desirable in the permutation
phase of the algorithm.

Permutation by Removal Another option is, that given a solution, some percentage of
the customers are removed from the tours, and put into the pool of unassigned customers. This
ensures that the remaining assigned customers are still valid in terms of their time windows. And
in the local search following the randomization, the unassigned customers can be reassigned to
vehicles.

Of course, one should ensure that a feasible solution is indeed reachable after this kind of
permutation. If objective function (2.6) or (2.7), page 8, is used, a feasible solution is easily
reachable if using therelocate neighbourhood in the local search. Since we have an unlim-
ited number of vehicles available, one can simply take each customer from the set of unserved
customers, and assign it to a new route. While this would result in a very bad solution, it is
nevertheless feasible. Using theexchange neighbourhood, on the other hand, does not allow
us to reach a feasible solution, so this is not usable in combination with permuting by removal
of customers. If the objective (2.9), page 9, is used, the solution found by the permutation is
feasible, since unserved customers are allowed according to this.

The point of the permutation in ILS is to scramble the solution sufficiently to reacha different
part of the search space, where another local minimum can be found, but not as much as to be
similar to a Random Restart heuristic, in which the local search start from a completely random
solution. In terms of the permutation by removal; if too few customers are removed from the
routing plan, the local search would be likely to insert the unrouted customers in the same places,
reaching the same local optimum and making the randomization pointless. Removingtoo many
customers could be too close to a total randomization, since there is too great afreedom in
placement of customers, making the algorithm slow and inefficient, and effectively very similar
to a random restart local search. The main point in the permuting part of ILS is to guide the
algorithm to different positions in the search space, not to limit its exploration toa too small part
of it. Therefore, some sort of tuning in the number of customers to be removed has to be done.

Permutation by Removal and Neighbourhood Yet another option would be to use a
combination of the two permutations described above. First: remove of some ofthe customers
in the routes, then follow this by a series of moves in the neighbourhood not used by the local
search. The removal of customers allows a greater freedom for the neighbourhood to scramble
the solution, reducing the problem with too tight solutions described above. Using a different
neighbourhood for the permutation scrambles the solution further, while maintaining valid time
windows. Hopefully, this forces the local search to examine a different part of the search space,
than it would if the simple removal of customers was used. The time used for this permutation
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could be problematic, but having having more freedom from the removed customers, is likely to
make valid moves in the permuting neighbourhood easier to find, thus decreasing the time spent
by this part. Like permutation by removal, this type of permutation is only valid whenusing the
relocate neighbourhood in the local search fase, because we want to be able to find a feasible
solution when performing local search.

6.4.2 Tuning

For the local search sub-procedure, Best Fit is used. This simply searches the entire neighbour-
hood of the current routing plan, and moves to the best neighbour. Due toinability of exhange
to add new unassigned customers to the routing plan, the Relocate neighbourhood is used by the
Best Fit local search.

To find the best type of permutation, the three permutations described abovewere tuned indi-
vidually. This was done on six instances, one from each class of Solomon instances, selected at
random. As the ILS might be run in a range of different time spans, the tuningwas done on a
30 CPU second time horizon, but results were reported as soon as they were found. This allows
the examination of how fast good results are found for the different settings. The tuning will be
described in the following.

Due to the tuning being inconclusive, a race was set up comparing all settings on all permu-
tations, on a 10 CPU second time horizon. This will be described after the individual tuning of
the permutation types.

Tuning Permutation by Neighbourhood

As described above, 6 instances were used to tune the permutation parameters. An unserved
customer contribute with 1000 units to the objective function, equal to adding aroute length of
1000. The number of moves made in each permutation were selected to be 5, 15, 25 and 35.
For each move, the entire neighbourhood is searched for feasible moves, and a random of these
is selected. Since the local search used the Relocate neighbourhood, the permutation was done
using the exchange neighbourhood.

The results are shown in Figure 6.4. As can be seen, no setting was overallsuperior. All
settings find good solutions on some instances, while being inferior on others. To find the best
setting further testing is needed. This is done when racing the different permutation types below.

Tuning Permutation by Removal

The tuning of permutation by removal of customers was done in the same way aswith permu-
tation by neighbourhood, described above. An unserved customer contribute 1000 units to the
objective function. Settings was tested with 5, 10, 15, 20 and 25% of the routed customers
being removed. The results are compiled in Figure 6.5. Overall, the setting of 25% seems to
be performing well, except on the C107 instance, on which the 15% setting is superior. Also,
the setting of 5% seems to perform rather poorly in general. The explanationfor this, is when
removing only 5% of the customers, the local search simply finds the same localminimum. Or
in other words, the solution is not sufficiently permuted to allow the local search to reach new
local minima.
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Figure 6.4: Permutation by Neighbourhood:Graphs of the ILS algorithm run on one Solomon instance
of each class. For each instance, four settings for number ofmoves to do were tested: 5, 15,
25 and 35. Larger versions of the graphs can be found in Appendix A.1.1.

Tuning Permutation by Removal and Neighbourhood

As described above, the problem with permuting by removal, could be that thesolutions are
not sufficiently permuted, and the following local search simply reaches thesame local mini-
mum. Similarly, in a tight plan, there might not be room for very many neighbouringmoves,
resulting in too little permutation being done. The third option is the combination of these two
permutations, in whicha percent of the routed customers are removed, followed byb moves
in the neigbhourhood. This was tested with the settings of(a = 5, b = 5), (a = 5, b = 15),

63



6.4. ITERATED LOCAL SEARCH (ILS)

0 5 10 15 20 25 30

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on R110

0 5 10 15 20 25 30

80
0

85
0

90
0

95
0

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on R204

0 5 10 15 20 25 30

10
00

20
00

30
00

40
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on C107

0 5 10 15 20 25 30

80
0

10
00

12
00

14
00

Cpu (s)
O

bj
ec

tiv
e 

V
al

ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on C203

0 5 10 15 20 25 30

30
00

40
00

50
00

60
00

70
00

80
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on RC104

0 5 10 15 20 25 30

12
00

12
50

13
00

13
50

14
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on RC206

Figure 6.5: Permutation by Removal: Graphs of the ILS algorithm running on one Solomon instance
of each class. For each instance, five settings for percentage of customers to remove were
tested: 5, 10, 15, 20 and 25%. Larger versions of the graphs can be found in Appendix A.1.2

(a = 10, b = 5) and(a = 10, b = 15). The results are compiled in Figure 6.6.

Again, it is hard to point out a superior setting. Although a setting of(a = 10, b = 15)
seems to perform well in general it fails to produce good results on C107.Similarly, a setting of
(a = 5, b = 5) seems to perform well, except for the instances R204 and RC206. Since these are
the two extremes of the parameter settings, it could indicate that the results are very dependent
on instance type. In any case, further testing needs to be done on the parameters, and this is done
below.
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Figure 6.6: Permutation by Removal and Neighbourhood:Graphs of the ILS algorithm running on
one Solomon instance of each class. For each instance, four settings were tested. Calling the
percentage customers removeda and the number of moves done in the neighbourhoodb, the
tested settings were(a = 5, b = 5), (a = 5, b = 15), (a = 10, b = 5) and(a = 10, b = 15).

Racing All Permutation Settings

From the previous sections, it is clear that further testing is needed to select the best method and
settings of permutation for ILS. Either the settings were not significantly different in the results
they produced, or the test base of 6 instances was too small.

To find the best permutation method and setting, a race was set up between allthe permuta-
tions and settings described above. The race was done on all the Solomon instances. Each run
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was given 10 seconds, which seems realistic for the purpose of the OnlineStochastic Algorithms
examined in this thesis. The settings of the race, are the same as described in section 6.1.1.

The output of the race is given in Appendix B.2. Only two candidates were alive at the end of
the race, namely permutation by removal of 20% and 25% of the customers. Asthe setting of
25% found the best solutions most frequently, this is the setting that is used for ILS.

6.5 Comparing ABHC and ILS

In the context of this thesis, offline algorithms are needed for three purposes; when deciding the
number of vehicles available for the online instances, to compare the performance of the online
stochastic algorithms, and as a sub-procedure for these. For the first two purposes, no there is
no time limit for the running time of the algorithms, and hence ABHC seems natural to use,
given its good results. The ILS was implemented for the specific purpose offunctioning as a fast
sub-procedure, that was able to run for as long time as specified while attempting to improve on
the solution. It is very easy to modify the ABHC to have a time limit though. Since the ABHC
at all times keep track of the best solution found so far, one can simply return this when no more
time is available. This makes it usable as a sub-procedure for the online stochastic algorithms.
The only problem with ABHC is its natural limit on how long it can improve a solution.But
given the good solutions that ABHC is able to find, if it has sufficient time to finish naturally,
the solution must be considered sufficiently good.

To compare the ABHC and ILS algorithms in terms of their function as a sub-procedure of
the Online Stochastic Algorithms, each was given 10 seconds to run, startingfrom a solution
generated by Impact followed by Ejection Chain. The algorithms were run onthe Solomon
benchmarks, and the results are compiled in Table 6.7. Surprisingly, ABHC is superior to ILS
on every instance. Apparently ABHC is very efficient at finding some very good local minima
fast.

During the run of the online algorithms, more and more parts of the route will be fixated,
making the solution space smaller. In effect this is similar to scaling down the instance size
that the algorithms have to solve. This makes the probability of the ABHC algorithmto finish
naturally greater, and hereby find very good solutions.

Based to these results, the ABHC was concluded to be superior as a sub-procedure for the
Online Stochastic Algorithms.
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Instance
ABHC ILS Diff.

u length u length u length(%)
C101 5 1115.31 5 1221.79 0 9.55
C102 1 1318.63 1 1639.94 0 24.37
C103 0 1095.60 0 1496.13 0 36.56
C104 0 958.62 0 1337.64 0 39.54
C105 3 1253.75 7 1640.60 4 30.86
C106 0 1153.19 5 1798.38 5 55.95
C107 0 1256.02 3 1679.36 3 33.70
C108 0 1165.72 3 1561.14 3 33.92
C109 0 884.00 0 1813.07 0 105.10
C201 0 660.06 0 860.57 0 30.38
C202 0 991.15 4 1336.51 4 34.84
C203 0 620.30 0 1398.44 0 125.45
C204 0 945.84 2 1133.41 2 19.83
C205 1 777.62 1 964.86 0 24.08
C206 0 672.10 0 903.90 0 34.49
C207 0 588.29 1 1038.61 1 76.55
C208 0 678.50 0 1002.93 0 47.82
R101 0 1661.21 0 1753.42 0 5.55
R102 0 1525.29 0 1588.78 0 4.16
R103 0 1291.02 0 1368.40 0 5.99
R104 0 1037.39 2 1146.06 2 10.48
R105 0 1415.37 0 1533.25 0 8.33
R106 1 1295.63 1 1461.00 0 12.76
R107 0 1172.92 3 1252.01 3 6.74
R108 1 984.36 2 1057.04 1 7.38
R109 0 1224.77 2 1460.25 2 19.23
R110 1 1184.45 3 1393.61 2 17.66
R111 1 1172.43 5 1270.16 4 8.34
R112 0 999.77 1 1198.47 1 19.87
R201 0 1246.64 0 1382.79 0 10.92
R202 0 1271.70 0 1383.00 0 8.75
R203 0 1178.71 0 1269.12 0 7.67
R204 0 918.42 0 968.77 0 5.48
R205 0 1036.76 0 1171.15 0 12.96
R206 0 1078.32 0 1159.54 0 7.53
R207 0 922.58 0 960.60 0 4.12
R208 0 788.84 0 885.46 0 12.25
R209 0 971.01 0 1041.95 0 7.31
R210 0 1014.65 0 1150.64 0 13.40
R211 0 834.89 0 933.51 0 11.81
RC101 0 1700.30 3 1855.80 3 9.15
RC102 0 1545.80 0 1911.68 0 23.67
RC103 1 1304.24 2 1345.47 1 3.16
RC104 2 1230.77 7 1332.17 5 8.24
RC105 0 1644.31 2 1843.68 2 12.12
RC106 0 1452.35 0 1499.57 0 3.25
RC107 0 1358.34 3 1408.19 3 3.67
RC108 0 1256.00 3 1445.18 3 15.06
RC201 0 1499.98 0 1687.47 0 12.50
RC202 0 1384.29 0 1511.38 0 9.18
RC203 0 1122.87 0 1219.89 0 8.64
RC204 0 936.22 0 1063.72 0 13.62
RC205 0 1412.61 0 1504.77 0 6.52
RC206 0 1156.15 0 1420.28 0 22.85
RC207 0 1111.83 0 1301.26 0 17.04
RC208 0 929.44 0 1038.34 0 11.72

Table 6.7: Results for Comparison of ABHC and ILS Given a Running Time of 10 CPU Seconds:
The instances are the Solomon benchmarks, and the starting solution of the algorithms were
produced by a run of Impact followed by a run of Ejection Chain.
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7 Oblivious Online Algorithms

When presented with a problem in which the input data becomes known duringthe execution
of the algorithm, an intuitive approach would be to use oblivious online algorithms. Even if
stochastic knowledge could be made available, this might be difficult and complicated to acquire
as well as writing algorithms to incorporate this knowledge. For this reason, oblivious online
algorithms are still used in many real life applications, because of their simplicity and straight-
forwardness. Note that “oblivious online algorithms” in the context of this thesis describes the
class of online algorithms that do not take into account stochastic knowledgeof future events.

The oblivious online algorithms are relevant to study in this thesis for two related reasons.
First of all, when studying one approach to a problem, it often makes senseto examine the
alternatives - in this case oblivious online algorithms. Although other ways ofhandling the
dynamic VRP have been examined, the time frame for this thesis is limited, and the online
approach is widely used and seemed the most obvious one to consider. Secondly, to be able
to assess how well the Online Stochastic Algorithms perform, we need a base of comparison.
By comparing the stochastic algorithms of this paper to online algorithms we get anidea of the
value of using stochastic knowledge in online problem solving. Furthermore, a measure can be
made ranging from worst (online) to best (offline) solution quality, allowingus to see how well
we are able to perform using the Online Stochastic Algorithm.

Three oblivious online algorithms were implemented for this thesis; Nearest Neighbour will
be described in section 7.1, Nearest Insertion will be explored in section 7.2 and an algorithm
called Local Optimization will be described in section 7.3.

7.1 Nearest Neighbour

Like Van Hentenryck and Bent [2006], the Nearest Neighbour (NN) heuristic was chosen as an
online algorithm. This is due to its simplicity and good results for the dynamic vehicle dispatch
problem in Larsen et al. [2002].

The basic principle of the algorithm is very simple. When a vehicle has finishedservice of a
customer (is idle), it travels to the nearest neighbouring customer. This continues until they are
forced to return to the depot (due to the time horizon). While this seems reasonably efficient in
terms of minimizing the route length, the algorithm does not take into account the time windows,
and hence the routing plan risks having a fair amount of waiting time. It is worthnoting that NN
waits as long as possible before making decisions. This allows for new customers to become
visible and to be taken into consideration when deciding which customer to serve next. For more
details on the algorithm, the reader is referred to Larsen et al. [2002].
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7.2. NEAREST INSERTION

7.2 Nearest Insertion

Due to the possible flaws of the NN heuristic, another heuristic was implemented.The approach
is a bit different, in that it creates routes using all the available customers, and whenever new
customers become available, these are inserted into the routes right away. This is rather different
than the NN heuristic, that adds to the route, only when a vehicle is idle. The advantage is,
that having already constructed routes, inserting new customers into this willnaturally take into
account the remaining part of the route, potentially yielding better solutions. At the same time,
this means decisions are based on fewer customers than by the NN heuristic,in which customers
are only added to a route when the vehicle is idle.

Algorithm 17 : Nearest Insertion Heuristic.
Data: Online Instance
Result: Routing Plan

γ ← initialize empty routes1

for t← 0 to h do2

C← new available customer at timet3

while C /∈ ∅
∨

∃c ∈ C, c insertable inγ do4

remove most suitable customer fromC and insert inγ at feasible position with5

minimum increase ind(γ)
end6

if C /∈ ∅ then7

addC to set of unserved customers8

end9

end10

An outline of the algorithm, dubbed Nearest Insertion (NI), is given in Algorithm 17. It starts
out by initializing each route as an empty tour (start and finish at the depot). Then the main loop
is entered (line 2-9). It runs through the entire timespan of the instance (line2), and whenever
new customers become available (line 3), these are all inserted into the routingplan (line 4-
6) one at a time, at a position in which they increase the total length of the routingplan by a
minimum amount. If it is not possible to insert all the new customers into the routing plan, the
remaining customers are assigned to the set of unserved customers.

In both NI and NN, ties are broken by simply using the first one found. In case of NN,
this means that if two neighbours are found with the same distance to the idle vehicle, the first
discovered is used. For NI, when equally good insertions are found, the first discovered is used.

7.3 Local Optimization: Pool-based Online Algorithm

A third online algorithm named Local Optimization (LO) was also implemented. It is a gener-
alization of the algorithm by Gendreau et al. [1999], and its approach is somewhat closer to that
of the Consensus algorithm. It has a partial plan, fixated up to current timet and keeps a pool of
solutions based on the known customers which is used to guide the algorithm to good solutions.
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CHAPTER 7. OBLIVIOUS ONLINE ALGORITHMS

The algorithm is outlined in Algorithm 18. It starts by initializing the partial planym as an
empty route, and the setR of visible customers. Line 3 calls a procedure for improving on
the pool of solutions until it is full (of sizep) or no more time is available. This is outlined in
Algorithm 19, and will be described below. The main loop (line 4-18) iterates over the entire
time horizon. It starts by accepting the new requestsRt, and for each routing plan in the pool,
it attempts to insert the customers into it. In the implementation for this thesis, this is done
by means of the Ejection Chains algorithm. Following the insertion, a local search is made to
improve the newly updated plan. The setR is updated to contain the new customers in line 11.

Algorithm 18 : Local Optimization
Result: Full Planγm

Data: Poolsizep

γm ← empty plan1

R← customers available from beginning2

improveSolutionPool(Γ, R, γm)3

for t← 1 to h do4

if new requestsRt then5

foreachγ ∈ Γ do6

InsertRt in γ7

γ ← run local search onγ8

end9

end10

R← R
⋃

Rm11

Pid ← getIdles(γm)12

if Pid /∈ ∅ then13

add customer toγm based on best planγ ∈ Γ14

Γ← update and prune plans fromΓ15

end16

improveSolutionPool(Γ, R, γm)17

end18

Line 12-16 handles idle vehicles. If a vehicle is idle, the best plan in the poolis consulted,
and its choice of customer is used for the partial planγm. The rest of the pool is then pruned for
routing plans not conforming to the selected request. In line 17, the procedure for improving on
the solution pool is called, and allowed to run for the remaining time.

The improveSolutionPool procedure is shown in Algorithm 19. If the pool is not
full, new routing plans are generated based on the partial planγm and the unserved customers
R\cust(γm). This continues to the pool is full or no more time is available. If time is still
available and the pool is full, the routing plans of the pool are optimized until nomore time is
available.

The idea in keeping a pool of routing plans, even though no sampled customers are used, is
to attempt to accommodate the unknown customers. The more plans available, the greater the
chance is for having a plan that is suitable for inserting the new requests.

71
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Algorithm 19 : Improve Solution Pool
Data: Pool of solutions (Γ), visible customersR, partial planγm.

while time is available∧Γ is not full do1

Γ← generate solutions based onR andγm;2

end3

while time is availabledo4

foreachγ ∈ Γ do5

optimize onγ;6

end7

end8

The algorithm that is improving and generating solutions inimproveSolutionPool,
must not be deterministic as this would lead to a pool of identical solutions. Therefore the
ABHC cannot be used for this, and instead ILS was used.

As can be seen, the LO algorithm is in many ways similar to the Consensus algorithm, but
with two important differences. The Consensus algorithm bases its pool onsampled customers,
whereas LO only takes known customers into account. Furthermore, Consensus bases its choice
of customers for idle vehicle on a consensus of all the plans in the pool, whereas LO bases it on
the best plan in the pool.

7.3.1 Tuning the Pool Size

Besides finding an offline solver, which has been done in section 6, the only thing to tune in the
LO algorithm is the pool size. For this, a race was set up between pool sizes of 1, 5 and 10. Note
that a pool size of 1 is similar to have an offline solver improving on the solution at all times
available, and adding customers from it to the partial plan only when needed(ie. when a vehicle
is idle).

The race settings were the same as those used in section 6.1.1. The algorithm had 1 CPU
minute before the time horizon started, and then 10 CPU minutes for the entire run. It was run
on all the Solomon benchmarks, and for each instance a random class waschosen to make the
problem online (see section 5.4). This should test the algorithm on a variety of different instance
types and on different amounts of dynamic customers.

The output of the race is printed in Appendix B.3. A pool size of 5 gave the best results, but
neither of the settings was superior enough to discard any of the other two candidates. For the
remainder of this thesis a pool size of 5 will be used.
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8 Using Historical Knowledge

For this thesis, exact knowledge of the stochastic distribution of customers isavailable for the
instances created via the instance template described in section 5.2. But oftenin real life appli-
cations this is far from realistic. In most cases, no models for the distribution of the customers
are available, and if it is, it is likely to be either outdated, or too imprecise.

For some online problems, the online algorithms are run continuously or for very long periods
of time, eg. packet scheduling. For these types of problems, one can attempt to learn the
distribution online using for example Hidden Markov Models. Here, subsequences of the input
might reveal information of the distribution and may be used to infer the state of distribution or
train the model. Another approach is to look at the pastx time steps, and derive the probability
that a specific request arrives in any of the subsequent time steps. Thislatter technique is called
historical average. While these techniques are usable for some applications of Online Stochastic
Algorithms, they are not suitable for the online stochastic vehicle routing problem dealt with in
this thesis. For more information on these, the reader is referred to Bent and Van Hentenryck
[2005].

The vehicle routing problem is a great deal more complicated than for examplepacket schedul-
ing, and stochastic distribution of the requests would seems infeasible to modelvia HMMs or
the alike. Historic average lacks the ability to capture the structural properties of the distribu-
tions, so instead the approach of historical sampling is taken. This is described in the following
section.

8.1 Historical Sampling

As mentioned above, the VRP is significantly more complicated than a problem like packet
scheduling — consequently it is very hard to model the stochastic distribution of its variables
using a HMM. In principle, historical averaging could be used, but it would not be able to
capture the structural properties of the distributions, such as customers arriving late in the day,
etc.. Rather, the approach of historical sampling seems very suitable for capturing the properties
of the VRPTW [Bent and Van Hentenryck, 2005].

The idea of historical sampling is to take entire instances from the past and use these as
samples. The algorithm for historical sampling for the VRPTW is given in Algorithm 20. It
takes a pool of past instances along with the current timet, the set of visible real customers that
have not yet been served by the current plan, as well as the currentplany.

In line 1, a plan is selected at random from the pool of past instances. Line 2 prunes the
instance for all the customers that have earliest service time before timet (ie. are in the past) or
not reachable from the current planγ before their latest time of service. To take the real requests
that are already visible, but have not been served yet, into account, thisamount of customers
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8.2. EXACT SAMPLING

(|R|) are removed from the setS. This gives the expected amount of customers that still remains
to become visible. The setS of customers is finally returned as the sampled set. With this
approach, the time of day customers appear is taken into account and a realistic sample of the
remaining customers is obtained.

Algorithm 20 : Historical Sampling
Data: Pool of historical instances (Υ), current time (t), set of unrouted real customersR,

current planγ.
Result: Set of sampled customersS

υs ← select random instance fromΥ;1

S ← customersc ∈ υs with e(c) > t, and reachable byγ beforel(c);2

for i← 1 to |R| do3

S ← S− random customers ∈ S;4

end5

return S;6

There are several advantages of historical sampling. First of all, this data will be available, or
can be made available very easily for most applications. It is very simple to implement, but yet
is able to capture structural properties of the problem, like customers in certain areas appearing
late, specific times of day that are particularly busy, etc..

A potential extension to historical sampling is to split the historical instances into different
classes. As an example, a taxi service will most likely have different distributions and amounts
of requests in weekends and weekdays. This can be modeled by splitting thepool of historical
instances into two classes; weekend and weekdays. If the day currentlybeing solved is a week-
end, only the pool of weekend instances is sampled. Of course, this couldbe further split into
holidays, special events, etc..

An interesting consideration in connection in relation to historical is how many historical
instances need to be available before the historical sampling is able to give good results. This is
tested in section 9.5 along with a comparison to exact sampling.

8.2 Exact Sampling

For this thesis, an exact probabilistic model is available in form of the instancetemplate de-
scribed in section 5.2. As mentioned, this is not realistic in practical applications, but having it
available for this thesis serves as a basis for assessing how well the historical sampling performs,
both as a mean of comparison and by being able to create “historical instances”. This can be
done by sampling instances using the instance template and adding this to theΥ pool. This is
repeated until the pool has the desired size.
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9 Solving the Online Stochastic Vehicle
Routing Problem

After having described the model and algorithms for the online stochastic vehicle routing, we
can now look at their performance. In this chapter different aspects ofthe algorithms will be
examined, to see how they perform when presented with various difficulties. In the end, a com-
parison will be made between the oblivious online algorithms, the Online Stochastic Algorithms
and the offline algorithm ABHC. This gives us a scale to evaluate the performance of the On-
line Stochastic Algorithm on, and furthermore conclude if there is any gain in using stochastic
information to guide the algorithm.

9.1 Test setup

To evaluate the Online Stochastic Algorithms, the benchmark instances described in section 5.3
are used. A real life time horizon of 30 minutes is given for the solving of an instance, plus 5
minutes for the initial generation of plans, based on customers that are available from timet = 0.
As previously described, the 30 minutes time horizon allows 3 seconds per time step for the 180
instances, and 10 seconds for the 600 instances. This, of course, is much less than the algorithms
would have in most practical use, where the real life time horizon would oftenbe 8 hours. To
compensate for this, as described in section 5.3, the instances were scaleddown, so solving one
of the generated benchmarks in the 30 minutes available would be somewhat similar to solving a
realistic instance on an 8-hour time horizon. If nothing else is described, theinstances are made
online using the online class 3 of Table 5.2, described in section 5.4, page 38.

For all the Online Stochastic Algorithms, the initial solutions (t < 0) are generated using
the Impact algorithm, followed by a run of Ejection Chains and ABHC with Best Fit. From
this point, the solving of sampled instances is done by Ejection Chains followed by the ABHC
with Best Fit. If nothing else is specified, the ABHC has a maximum of 10 seconds to solve an
instance.

The testing was done on the computers of IMADA, University of Southern Denmark. These
are Intel Core2 6300 (1.86GHz) processors with 2GB of memory.

All the times measured are CPU-time.

9.2 Regret Customers

As described in section 4.4, it was not clear from the papers of Van Hentenryck and Bent for
which customers regret should be calculated — for the current route of the customer or the entire
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(a) Results of the Regret algorithm having different strategies for calculation of regret.
Run with a discretization size of 24
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(b) Results of the Regret algorithm having different strategies for calculation of regret.
Run with a discretization size of 35.

Figure 9.1: Graph of the Solution Quality of the Regret Algorithm, Run with Different Types of
Regret Calculations: These differ in which customers the regret is calculated for. The
figures show results for the four generated benchmark instances. Results are connected by
lines to make the performance of the algorithms more clear for the reader. Figure 9.1(a)
shows results for the algorithm, when the discretization size is set to 24, and Figure 9.1(b)
show for discretization size of 35.

routing plan. Moreover, when using the Relocation strategy, it needs to beconsidered whether
regret should be calculated for sampled customers also.

To decide this, different settings of the Regret algorithm were compared.For regular Regret,
the regret was calculated for real customers in the route and for real customers in the entire plan.
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CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING PROBLEM

Regret with Relocation was tested with regret-calculation for both all and real-only customers
in the route as well the plan. The different settings were run on the four generated benchmark
instances described in section 5.3. This was done with a discretization of map of 24 and 35. This
means that the map is split into 24 and 35 units for each axis, yielding 576 and 1225 discrete
areas (see section 4.6.1). The results are presented in Figure 9.1. In thelegends,RRdenotes
Regret with Relocation strategy and(sampled)means that regret is also calculated for sampled
customers. The cost of having an unassigned customer in a routing plan is set to 1000. The exact
solution values are given in text in Appendix A.2.

Looking at the standard Regret algorithm (without Relocation), calculatingregret for only the
route (marked in blue) outperforms normal regret calculation for the plan inall instances but
180LOOSE.

Turning to the Regret algorithm using Relocation (RR), the results are not as clear. As can be
seen, it is preferable to calculate the regret from the route only, but whether to include sampled
customers in this calculation is unclear, and seems to be dependent on discretization size. The
choice was made to include sampled customers in the regret calculations. This seems natural
since Regret with Relocation considers real and sampled customers equal,and it makes sense to
do this in the calculation of regret also.

9.3 Size of Discretization

Section 4.6.1 describes the idea of discretization of the map. As opposed to allpositions of the
map being unique, ranges of positions are grouped into areas and the online stochastic algorithms
consider these as one unit when calculating consensus, etc.. Since only discrete positions are
used in this thesis, on a map of 70x70 units as the generated benchmarks, using no discretization
would be similar to discretizing the map with 70x70 areas containing one discrete position.

Discretization is only examined for the Relocation variants for Consensus and Regret, since
only these allow consensus for sampled customers and hence are the only ones it make sense to
use discretization for.

For examining the effect of discretization, runs were made with 10, 18, 24,35 and 70 splits
per axis. This gives areas of72, 42, 32, 22 and1 discrete positions, respectively. Each setting
was run once on each of the four generated benchmark instances. Theresults are displayed in
the graphs of Figure 9.2 and the numeric results are given in Appendix A.3.

Although the Regret algorithm using Relocation get very similar results with a 70x70 and
24x24 discretization, the setting of 24x24, ie. 9 positions per area, performs best in all cases
but one (600TIGHT) in which 70x70 performs best. The regret was calculated for the route
including sampled customers.

For CR the results are less clear. A discretization of 10 and 18 finds good results for the 180
and 600 instances, respectively. The explanation could be the structural properties of the two
classes. Recall that the two 180 instances have the same positions for customers, and so do
the two 600 instances. Possibly these two positionings are fit for a discretization of 10 and 18,
respectively. Even though a setting of 35 does not give the best resultsin any run, it seems to be
more stable than the others - it might be that it is not as affected of the structure of the customers.

It is difficult to asses what setting of discretization is best, based on only 4 instances, that
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(b) The effect of different discretizations for the Regret algorithm using Relocation.

Figure 9.2: Results of Different Degrees of Discretization: The graphs show the solution quality of
the Regret and Consensus algorithms with Relocate run on thegenerated benchmarks with
different degrees of discretization. These are run on the four generated benchmarks. The
numbers in the legend, describe the number of areas the map issplit into. The weight of
unrouted customers are set to 1000.

only have 2 different positionings of the customers. Furthermore, a map ofa small size like
70x70 units, in which the customers can only be placed in discrete (integer) positions, the effect
of discretization might not be as clear. The discretization size is likely to depend on the size
of the map. A map of size 500x500 with discrete, or even continuous positions, containing 100
customers could lead to a different setting and give a clearer picture of theeffect of discretization.
In any case, it is obvious from the results that discretizationdoeshave an effect compared to not
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discretizing, and furthermore this effect seems positive.
It would definitely be interesting to compare the effects of discretization on a bigger map,

and possibly with continuous positioning, or on more instances, to get a more clear image of its
effect and a better idea of what degree of discretization is suitable for different map properties.

9.4 Sampled Solutions: Quality vs. Quantity

For the Online Stochastic Algorithms described in this thesis, a very important part is the offline
algorithms. While it is obviously desirable to have an efficient algorithm findinghigh quality
solutions, the balance of the quality and quantity of sampled solutions is not as clear.

If the offline algorithm is given short time to run, this will allow the Online Stochastic Al-
gorithm to generate and solve more instances. When many sampled instances are solved, a
better statistical basis will be available for the online stochastic algorithm. On the other hand,
the Online Stochastic Algorithms base their decisions on the routing plans foundby the offline
algorithms, and if these are of low quality, this might be reflected on the solution.Solving only
few sampled instances but doing so thoroughly, will let the Online Stochastic Algorithm base its
decision on good routing plans, but few of these mean that the statistical basis for the decisions
is not as good.

To examine this, a comparison of the Online Stochastic Algorithms run with different settings
of the offline algorithms is needed. Since the real life time horizon is set to 30 CPU-minutes
(excluding 5 CPU-minutes of sampling and solving instances with the customers known at time
0), 10 CPU-seconds are available per time step for the 180 instances, andonly 3 CPU-seconds
for the 600 instances. For this reason, the testing of quality and quantity of sampled solutions
was made only on the 180 instances, since this allowed the offline algorithms a running time of
up to 10 seconds. Five different offline settings were tested. A simple Best Fit was used as the
fastest offline algorithm. Besides this, 4 different settings of ABHC were tested, with 1.5, 3, 6,
and 10 seconds of running time, respectively.

9.4.1 Results

The Consensus(C) and Regret(R) algorithms were run with a discretizationsize of 70x70. Their
Relocation variants CR and RR, were run with discretization sizes of 35x35 and 24x24, respec-
tively.

The results of the runs are compiled in Table 9.1. In terms of C and R, it is clearthat good
quality of solutions is to prefer over quantity. For both the loose and tight versions of the 180
instances, the best results were found with a setting of 10 seconds for theABHC.

The results for the algorithms using relocate are not as clear. In two cases, ABHC with 1.5
second of running time performs best, while Best Fit gives the best resultfor RR on 180LOOSE
and ABHC with 10 seconds finds the best solution for CR the 180TIGHT instance. To examine
this further, the comparison was reproduced for the 600 instances. Since these allow no more
than 3 seconds of running time per time step, only the settings of Best Fit and ABHC with 1.5
and 3 seconds running time could be tested. In terms of C and R it seemed clearfrom Table 9.1
that it was desirable to give them a long running time, so there was no need to include them in
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180LOOSE
Best Fit ABHC 1.5 ABHC 3 ABHC 6 ABHC 10

C 3 903.98 2 846.90 1 928.33 1 888.67 0 918.12
R 4 895.18 1 942.76 1 1028.75 2 953.57 1 921.83
CR 2 1144.82 1 1060.23 2 1100.63 1 1086.77 2 1086.71
RR 1 1173.39 2 1077.85 2 1114.12 2 1136.24 2 1138.82

180TIGHT
Best Fit ABHC 1.5 ABHC 3 ABHC 6 ABHC 10

C 3 1004.77 0 1030.99 0 1018.64 0 1027.01 0 1018.20
R 3 1026.82 0 1054.86 1 1014.16 1 1014.31 0 1053.65
CR 3 1117.41 0 1211.64 0 1128.98 2 1157.60 0 1111.30
RR 3 1142.40 0 1152.99 0 1223.40 2 1196.63 1 1200.39

Table 9.1: Results of the Online Stochastic Algorithms withDifferent Settings of Offline Algorithm:
This table displays the results of the regular Consensus (C)and Regret (R) algorithms and
Consensus with Relocation (CR) as well as Regret with Relocation (RR) run with different
settings of offline algorithms. The 1.5, 3, 6 and 10 denotes the maximum allowed running
time of the ABHC in CPU-seconds. Obviously all the time available in a time step is used
to generate and solve instances. Consequently ABHC 1.5 is likely to be run many more
times than ABHC 10. In each cell, the left number denotes unserved customers, while the
right number is the length of the routing plan. Best results are marked with bold types. The
displayed results are for the instances 180LOOSE (top) and 180TIGHT (bottom)

the test on the 600 instances. For the Relocation, in 3 of 4 cases, the best results were found
when the offline algorithms had a short running time, so it makes sense to examine this further
on the 600 instances, to make it more clear what setting is preferable.

The results for the 600 instances are presented in Table 9.2. As in the caseof the 180 instances,
for the loose version, RR finds the best solution using Best Fit followed byABHC 1.5. In all
other cases, ABHC performs best with a setting of 1.5.

A possible reason for the difference in choice of offline algorithm for theregular C and R
algorithms, as opposed to their Relocation counterparts, could be their dependency on sampled
customers. As mentioned above, more sampled instances gives a better representation of this
distribution, and hence allows Relocation to serve more relevant samples. The regular C and
R only serves real customers, and while sampled customers affects their decisions, it comes
down to which real customer is next on a route. Therefore, C and R might be more tolerant of
unrepresentative samples.

600LOOSE
Best Fit ABHC 1.5 ABHC 3

CR 0 721.94 0 690.88 0 759.41
RR 0 747.85 0 794.26 2 710.81

600TIGHT
Best Fit ABHC 1.5 ABHC 3

CR 3 926.76 0 853.22 0 892.01
RR 2 849.37 1 821.89 1 847.47

Table 9.2: Table Displaying the 600 Instance Counterpart ofTable 9.1: Best results are marked with
bold types.
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Figure 9.3: Solution Quality for Sampled Solutions: Graphs showing the average objective value of
the sampled and solved instances over the time horizon. For every three time step, an average
of the objective functions of the plans generated and solvedduring these time steps is shown.
This was done to smooth the graph out. The results are of runs of the C and CR algorithms
run on the 180LOOSE instances. Unassigned customers contribute with 1000 to the objective
function.

9.4.2 Further Examination

When examining the effect of quality and quantity, it seems relevant to look atthe actual solution
qualities found by the different algorithms over the course of execution. An example of these
are displayed in Figure 9.3.

For the C algorithm, the solutions generated by Best Fit (Descent) are inferior through the
entire run. The two ABHC settings are more equal until around time 50, when ABHC 10 gen-
erally manages to insert 1 more customer customer into the route. As can be seen, Best Fit is

81



9.4. SAMPLED SOLUTIONS: QUALITY VS. QUANTITY

0 50 100 150
0

50
00

10
00

0
15

00
0

Time (t)

P
la

ns
 A

va
ila

bl
e

C Best Fit
C ABHC 1.5
C ABHC 10

Plans Available for C on instance 180LOOSE

0 50 100 150

0
50

00
10

00
0

15
00

0

Time (t)

P
la

ns
 A

va
ila

bl
e

C Best Fit
C ABHC 1.5
C ABHC 10

Plans Available for CR on instance 180LOOSE

Figure 9.4: Quantity of Sampled Solutions: Graphs showing the number of plans available over the
course of time for instances 180. Unassigned customers contribute with 1000 to the objective
function.

generally more smooth than ABHC 1.5 which is in turn more smooth than ABHC 10, especially
in the beginning of the timespan. This is due to the many more plans generated by the Best Fit
algorithm.

The picture is not as clear for the CR algorithm, where the three offline algorithms are more
equal. At around time 120, ABHC 10 and Best Fit generally fails in serving 1more customer
than ABHC 1.5.

It should be mentioned that when running ABHC 10, for example, the algorithm will not
necessarily have a full 10 seconds to run. Sometimes, only little time will be left over from
calculation of Consensus, pruning, etc.. This could explain the very bad solutions that seems
to be found in the early time steps from ABHC. Since, in this period, there are only time for
around one optimization, in case of ABHC 10, a very bad solution will have a great effect on the
average objective value. As we move forward in time, a greater part of theplans will be locked,
and therefore the ABHC will often be done withing the 10 seconds. Therefore, the fluctuations
are not as big late in the graph as in the beginning.

Besides the quality of the solutions, the quantity of sampled and solved instances might have
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an effect on the solution. The results are displayed in Figure 9.4. As couldbe expected the
pool of plans available for Best Fit is generally larger than that of ABHC 1.5, which is in turn
generally larger than that of ABHC 10. At many points during the run of the algorithm, the
plans available suddenly becomes smaller. This is due to decisions being made for an idle
vehicle. When this happens, the plans that do not agree with this decision are pruned.

There are a few curiosities in connection to the graphs of Figure 9.4. Firstof all, it seems
like the generation of plans stops at around 130 (earlier in the case of Best Fit). There could
be several reasons for this. At this point, all or most of the routing plan willbe fixated, and so
the freedom for the offline heuristics become very small or non-present.Therefore generating
and “solving” an instance, is as easy as sampling it from the instance template.This might
allow for generation of many plans (10 thousand+). A possible explanationthat no more routes
are generated, is that, at every time step, the sampled routes have to be fixated according to
the current timet. While this is generally very fast, having to do this for 15000 plans might
be time consuming, and hence allow little or no time for generation of new plans. Whatever
reason, one would have expected the pool size to grow increasingly towards the end. While this
is unfortunate, it should not have any significant effect on the solution quality since the basis for
making decisions should be sufficient with 10.000+ plans.

The other curiosity is the behavior of Best Fit, when looking at the CR algorithm. It takes
some dives from 20.000+ plans, down to as few as 1 plan towards the end of the timespan. The
same pattern emerged for RR, while not for R. Note that vehicles do not moveto depot until
necessary. Therefore, the Consensus of a vehicle could be on a sampled customer, even though
all but one plans agrees on the depot. This could be a possible explanationfor the dramatic
pruning. After a great dive in the quantity of plans, the pool is quickly filleddue to a great part
of the plan being fixated, resulting in very fast generation and solving of plans.

9.5 Historical Sampling

As described in section 8.1, exact stochastic knowledge of the instance is rarely available in real
life applications. For this reason, alternative methods have to be used. Oneapproach would
be to use historical sampling, which is what is tested in this section. In real life this can be
obtained simply by using historical instances (data from previously solved instances). In context
of this thesis, “historical data” is generated by sampling full instances fromthe relevant instance
templatex times, wherex denotes the number of historical instances that should be available.

The greater the amount of historical data available is, the closer one would expect to come to
the actual exact stochastic properties of the instance. This means, ideally,that the more historical
data that is available, the better solutions the algorithms should be able to find.

For testing the historical sampling, the algorithms were run with pools of 1, 10, 100, and 1000
historical instances available. Furthermore, results using the exact stochastic model (instance
template) were found as a base of comparison.

The results are shown in Figures 9.5-9.8. The exact numbers of the reported results are given
in Appendix A.4. Overall there is a pattern of better solutions being found when more historical
data is available, but not as consistently as one would have expected. Especially the two Regret
algorithms behave oddly. At very small amounts of historical data (1 and to some degree, 10), the
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quality of the solution found will naturally be very dependent on whether thehistorical instance
happens to be very similar to the instance being solved, in terms of time windows, positions,
etc.. If this is the case, good results will be found, and oppositely, if the historical instances are
far from the instance being solved bad solution will be found. When reaching a pool size of 100
or more, the probability of getting an “unlucky” or “lucky” pool of samples becomes negligible.
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Figure 9.5: Results on 180LOOSE Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historical sampling on different amounts of
historical data. Results of precise sampling is also displayed for comparison.
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Figure 9.6: Results on 180TIGHT Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historical sampling on different amounts of
historical data. Results of precise sampling is also displayed for comparison.
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Figure 9.7: Results on 600LOOSE Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historical sampling on different amounts of
historical data. Results of precise sampling is also displayed for comparison.
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Figure 9.8: Results on 600TIGHT Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historical sampling on different amounts of
historical data. Results of precise sampling is also displayed for comparison.
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If more time had been available for examining the properties of historical sampling, the algo-
rithms could have been run multiple times with other “historical data” (different pools of 1, 10,
100 and 1000). This would help draw a clearer picture of the effects of historical sampling.

In any case, from the results displayed in the figures, there is a tendencyof finding improving
solutions the more historic instances are available, and in the most cases, having eg. a basis
of 100 historical instances results in better solutions than having a single historical instance
available.

9.6 Comparing with Offline and Online Algorithms

This section compares the Online Stochastic Algorithms with the oblivious online algorithms
and the offline solution. This is done in the 5 different online classes of instances, described
in Table 5.2 (section 5.4, page 38). The idea is to evaluate how the differentOnline Stochastic
Algorithms perform compared to each other, the online algorithms and the offline solution, and
furthermore to examine the influence of the number of dynamic customers in the instance solved.

The offline solutions are produced by the ABHC algorithm. The Consensusand Regret algo-
rithms without Relocation were run “without” discretization (that is, a discretization of 70x70
squares, giving one discrete area one position, which is still a very rough discretization com-
pared to continuous positionings of customers) and the ABHC at a 10 CPU-seconds time limit.
Their Relocation counterparts were run with a discretization of 24x24 and 35x35, respectively,
and both used ABHC with 1.5 CPU-second running time as offline search procedure. For all
the Online Stochastic Algorithms, exact sampling was used (that is, sampling directly from the
instance template, as opposed to using historic sampling).

The online algorithms examined are the NN, NI and LO algorithms described in Chapter 7.
The NN algorithm was also used by Van Hentenryck and Bent, as well as analgorithm very
similar to the LO algorithm implemented for this thesis.

The number of vehicles available for the instances were found by a run ofan offline ABHC
using the objectivew1(γ) (see equation (2.7), page 8), in which the number of vehicles is min-
imized. This means, that for each instance, one vehicle less than reported inTable 5.1, page 36
is available.

Since Consensus, Regret and their Relocation counterparts are dependent on samples, which
are stochastic elements, each algorithm is run 7 times for each instance and setting, to find their
average performance. The results reported in this chapter is the mean value of their solution
value. While this gives a clearer picture of their average performance, some details are lost in
the algorithms stability, eg. one algorithm could be finding very good solutions one third of the
time, while another could be stable at finding average solutions.

The results are shown in Figures 9.9 and 9.10. In the reported objective functions, unassigned
customers contribute with 1000 to the objective function. The exact values of the solutions are
given in Appendix A.5.

Oblivious Online Algorithms Looking at the oblivious online algorithms, NN is in gen-
eral finding better solutions than LO. These are both inferior to the NI, the Online Stochastic
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Algorithms and offline algorithms. In general NI is performing very well, andgives the best
result following the offline algorithm in one case.

In general, the LO algorithm produces bad solutions. In all cases but one (online class 5
for the 180TIGHT instance), it performs worst of all the algorithms examined. In particular,
relative to the other algorithms examined, it seems to be performing bad for the loose instances,
ie. instances with large time windows. Furthermore, the LO algorithm seems veryinfluenced by
the number of dynamic customers. This also makes sense, in that the algorithm bases its choices
only on the known customers, and having fewer of these available is likely to result in worse
solutions.

As mentioned Nearest Neighbour (NN) performs better than LO, but in general manages to
place at least one less customer in the routing plans, compared to the other algorithms. It is not
as affected by the degree of dynamic as LO, but this due to the algorithm notbeing as dependent
on the number of visible customers as LO.

As opposed to NN and LO, the Nearest Insertion algorithm performs surprisingly well and is
competitive with the Online Stochastic Algorithms. In a single case, it finds the best solution
(class 5 for instance 600TIGHT) following the offline algorithm. Relative to the Online Stochas-
tic Algorithms it seems to be better at handling short routes (few customer per route) than long
routes (many customers per route). Considering only the oblivious online algorithms, this is by
far the best.

Online Stochastic Algorithms Unlike the case of the oblivious online algorithms, there
is no obvious pattern in which Online Stochastic Algorithm is best - it varies from instance to
instance and from online class to online class.

Looking at the Consensus and Regret algorithms not using Relocation (C and R), the Con-
sensus algorithm is generally superior to Regret, with the exception of having low amounts of
dynamic customers (online class 1 and 2) on the instances with short routes (the 180 instances).

The Relocation counterparts of Consensus and Regret (CR and RR) give less obvious results.
Disregarding 180TIGHT, CR generally performs best. For 180TIGHT,RR is superior for all
online classes. Besides this, there seems to be no generel pattern predicting which algorithm
performs better than the other.

In most cases, not using Relocation seems to be preferable, but this is definitely not conse-
quent. As an example, in the online class 5 for both the 600 instances, the R and C algorithms
perform worse than their Relocation counterparts.

These results are not consistent with those of Van Hentenryck and Bent.In their book, the
reported results are that in general R is to prefer over C, and RR is preferable over CR. Further-
more only with very low amounts of dynamic customers are the C and R algorithms superior
to their Relocation counterparts. When a great part of the instance is dynamic, the Relocation
variants are much superior to C and R. There can be several reasons for this inconsistency. The
instances the algorithms were tested on are not the same, and maybe more importantly, the pre-
cision of the stochastic knowledge might be different. If Van Hentenryck and Bent eg. have
very exact stochastic knowledge and very high probability for “guessing” correctly when sam-
pling customers, this could greatly affect the efficiency of the algorithm, or more precisely, the
feasibility of the Relocation algorithms. Besides this, differences in perception of the algorithm
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details, and consequently implementation, could obviously be a reason for thedifferences in
result.

Comparing the Online Stochastic Algorithms to NI, the Consensus algorithm without Relo-
cation is preferable over NI in most cases. For the online classes 1-3, NIperforms best on the
180LOOSE instance, as well as on the online class 5 on both the 600 instances. In all other cases
the C algorithm is superior.
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(a) Results for the 180LOOSE instance. The upper figure shows all the algorithms and their
solution values. In the lower, the y-axis is limited to a maximum of 6000 to make the results
more clear for the algorithms performing well.
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(b) Results for the 180TIGHT instance.

Figure 9.9: Comparison of the Algorithms on the 180 Instances: The figure shows a comparison of
the Online Stochastic Algorithms to the oblivious online algorithms and the offline value for
the 180 instances.
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(a) Results for the 600LOOSE instance. The upper figure shows all the algorithms and their
solution values. In the lower, the y-axis is limited to a maximum of 2500 to make the results
more clear for the algorithms performing well.
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(b) Results for the 600TIGHT instance.

Figure 9.10: Comparison of the Algorithms on the 600 Instances: The figure shows a comparison
of the Online Stochastic Algorithms to the oblivious onlinealgorithms and the offline value
for the 600 instances.
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10 Further Extensions and Perspectives

In Van Hentenryck and Bent [2006], it is mentioned that the results on Online Stochastic Vehicle
Routing took them five years to derive. Although this is not comparable to reimplementing their
algorithms, the time spent on implementation of the basic framework for the Online Stochas-
tic Algorithms was very extensive, and left much less time for examining and extending the
algorithms than could have been desired.

The choice of extension was discretization of the map, as this was thought to be a natural
and useful addition to their algorithms. But there were several other features that would be both
interesting and useful to implement. This chapter describe these extensions and how they could
have been achieved.

10.1 More Extensive Testing of the Algorithms

Generally speaking it would have been desirable with more thorough testing.Due to the long
running time of the algorithms, this was not feasible — only a limited amount of testing was
possible. Furthermore, since no benchmarks with stochastic information were available, these
had to be implemented to challenge different aspects of the algorithms.

Only four different instances were used in the testing of the Online Stochastic Algorithm.
This greatly limited how well the algorithms could be tested. Having too much variationin the
properties of the instances would make it hard to deduce what properties of the instances affect
the algorithms in what way. Having too little variation would not give a fair picture of how well
each algorithm perform in general.

The focus was chosen to be on tightness of time window, length of time horizon and number
of customers in a route, which is what the constructed instances attempted to challenge. Still, it
would have been desirable to test the effect of these properties even more thoroughly, by making
similar instances only differing in a single or very few properties. Furthermore, the effect on
the algorithm of changes in other properties like positioning of customers, areas with certain
properties, demand, etc would have been desirable to examine.

From section 9.6, the need for more instances to base conclusions on became clear. Here
the different Online Stochastic Algorithms were compared, but it was not possible to conclude
which algorithm performed best, nor under what circumstances one algorithm was superior to
others.

The implemented instance generator allows for different areas of the map to have different
properties for the customers. This could be used to test the effects of having areas that differed
in lateness of requests, amount of demand, size of time windows, etc.. Again,this would require
the generation of a series of instances with changes in only a few properties to examine how well
the algorithms handle these.
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10.2. IMPROVEMENTS IN IMPLEMENTATION

The algorithms of Van Hentenryck and Bent were extended to be able to handle continuous
positions on the map by means of discretization. To further examine the effectof discretizing
the map, it would have been interesting to compare the algorithms on instances withcontinuous
positioning to the use of discretization on them.

10.2 Improvements in Implementation

The most CPU intense part of the Online Stochastic Algorithms is the generation and, in partic-
ular, solving of instances. While it might not be a problem on smaller instances, like the ones
solved in this thesis, it could be a problem getting a sufficiently large pool of sampled solutions if
the instances are large and very time-demanding to solve. As the Online Stochastic Algorithms
base their decisions on this pool, this is a relevant issue to address.

Parallelization: Since the sampled instances can be solved independent of each other, par-
allelization is an obvious solution to this problem. As an example of how this could beachieved,
we have a server and client machines (or CPUs). The clients samples and generate solutions at
all times, sending solved instances to the server process. Whenever something happens that the
clients need to take into account, like a new request or change to the master plan, the clients
are notified, and take this change into account for subsequent sampling and solving of instances.
The server process is responsible for finding Consensus, pruning the pool, etc.. The only thing
the client processes do is generating plans. Gendreau et al. [1999] have implemented a parallel
tabu search for the dynamic VRP, in which a pool of solutions, based on allthe visible cus-
tomers is maintained. The solutions of the pool are continuously optimized concurrently by the
clients and consulted by the server process when decisions have to be made. Their work could
be used as a starting point when considering a parallel implementation of the Online Stochastic
Algorithms.

There can be several gains of generating and solving plans concurrently. First of all, more
plans can be generated, since more processing power is available, hence giving the algorithms
an improved base for making decisions. When dealing with large instances, itmight not be
possible to find good solutions within the timespan of a single time step. When distributing
the job of solving the sampled instances to other processors, these can be allowed to span over
multiple time units, as long as no new customers arrive or addition of new customers to the
master plan occurs. This means that the offline algorithm has time to find good solutions even
on large, time consuming instances.

Solving Across Time steps: Allowing the solving of plans to run across time steps is
possible without parallelization. For this, the optimization would be allowed to run uninterrupted
until either a new request is made or a vehicle is idle. The next idle time of a vehicle is known
with certainty every time a customer is assigned to it. In terms of new request there is no way
of foreseeing this exactly, so some type of interrupt function would have tobe implemented to
notify the algorithm that it has no more time to solve instances. Furthermore, the algorithm
would have to keep track of the current time,t, during optimization, so no illegal moves are
made in the optimization.
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CHAPTER 10. FURTHER EXTENSIONS AND PERSPECTIVES

10.3 Extensions to the Algorithms

Solving Large Instances: The instances solved in this thesis only contains 50 customers.
In a real life application instances would often be many times bigger. Since the VRP is in the
class of NP, a big increase in size would lead to a dramatic increase in runningtime. If the
size of the instances to be solved are too big to find reasonably good solutions in the available
timespan, a solution would be to only sample a part of the time horizon. So if the current time
is t, one could sample until timet + x and only consider the customers that need service in the
nextx time units. This obviously decreases the instance size and (depending on thesize ofx)
allows the algorithms to find good solutions within the allowed time. Since only a part of the
time horizon is considered, in the end, the solutions might not be as good as if the entire time
horizon was considered, but it allows to solve much bigger instances (manycustomers). This
principle can also be applied to handle problems in which there is no finite time horizon, ie. the
instance is continuous.

Switching Offline Algorithm: Throughout the execution of the algorithm, increasing parts
of the solution will be fixated (namely the part preceding timet). The remaining part, that has
to be solved, obviously becomes smaller and consequently faster to solve. Optimal solvers have
been considered infeasible as a sub-procedure to the Online Stochastic Algorithms due to their
long running times compared to heuristics. But at some point in the execution ofthe Online
Stochastic Algorithm, the remaining part of the instance to solve will be sufficiently small, to
let optimal solvers be used within the timespan allowed. Having the offline solverswitch to a
branch and bound algorithm at some point in time, for example, would start giving optimally
solved sampled instances, which could have a positive effect on the solution quality of the master
plan.

Maintaining Large Pool size: A potential problem for the Online Stochastic Algorithms
described in this thesis is their dependency on the pool of sampled plans formaking decisions.
When this is very small, the decisions made by the algorithm will be worse. To avoid small
pools one could attempt to generate more plans, by means of sampling only partsof the time
horizon, making the instance size smaller, as described above or use a faster algorithm finding
solutions of lower quality.

Another strategy would be to attempt to minimize the number of plans pruned. Instead of
pruning all the plans that do not agree with the change in the master plan, the algorithm could
attempt to fit the sampled plans to these changes. As a simple example of this, if the sampled
plan γs does not agree on the consensus of a route, the customer ofγs could be attempted
replaced by the consensus customer, hence avoiding to pruneγs. On of course has to ensure
that the consensus customer is not present elsewhere inγs and that the replacement is feasible
in terms of timewindows, etc.

This, and more elaborate schemes to fit the sampled plans to the choice of consensus might
help the algorithm keep a bigger pool of sampled plans, and hence make better decisions when
adding customers to the master plan.
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10.4. EXTENSIONS TO THE MODEL

10.4 Extensions to the Model

In this chapter, mostly algorithmic and implementational improvements have been considered
but there are some extensions to the model that also would be interesting to examine. These will
be discussed here.

Moving from completely offline problems to the online stochastic VRP considered in this
thesis, is a big step in terms of being able to model real life problems more realistically. However,
as previously mentioned, it might not be realistic to know the service time, traveltimes, demand,
etc. as soon as the request is made. There might be delays in traffic due to heavy traffic,
accidents, or the like. In terms of service time, it might not be possible to predict,before arriving
at the customer. The same applies to demand. Including these uncertainties in the model would
be another big step towards making it more realistic and applicable in practical applications.
Due to the nature of the Online Stochastic Algorithms, this extension would be relatively easy
to implement. Since the master plan is only extended when a vehicle is idle, the extension of a
visit (length of service time) for example, would only shift the time at which the vehicle is idle
and a new decision has to be made. There is not a plan extending the visit, thatcould become
infeasible due to a prolonging of a visit (except of course if the visit extends as far as leaving too
little time to return to the depot within the time horizonh). When a change in eg. travel time
occurs this is saved in the master plan and the pool of sampled plans is then pruned for those
that cannot conform to these new changes. This would of course mean that the pool of sampled
plans would be pruned more often, leaving a smaller pool to base decisions on, which in the end
has a negative effect on the solution quality of the algorithm. On the other hand, the algorithm
would be able to handle much more realistic problems. Besides this, the algorithm already has
the functionality for a qualified guess on the properties of a customer (sampling), and for coping
with changes in the properties of a customer (by pruning). This would therefore be a interesting
extension to the model, that could be handled in a very natural way by the Online Stochastic
Algorithms.
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11 Conclusion

This thesis is based on Van Hentenryck and Bents work on online stochasticvehicle routing
[Van Hentenryck and Bent, 2006]. It focuses on taking advantage ofstochastic information when
solving the dynamic VRP. The algorithms described by Van Hentenryck and Bent introduce a
new approach, in which the unknown parts of the instances are sampled using the stochastic
knowledge available. This has two advantages: it allows regular offline algorithms to be used to
solve the partly sampled instances, and secondly, if several of these partly sampled instances are
solved, this can be used as a basis for guiding the vehicles throughout theexecution.

For this thesis, a different offline algorithm than that of Van Hentenryck and Bent is used,
namely the Attribute Based Hill Climber (ABHC). Furthermore, the Online Stochastic Algo-
rithms are extended to use discretization of the map, allowing the algorithms to handle continu-
ous positioning of customers. The results of the Online Stochastic Algorithms using discretiza-
tion and the ABHC are compared to the solutions found by three oblivious online algorithms as
well as the offline solution to the instances. Since no instances with known stochastic informa-
tion could be found, these had to be generated. This is done by the use of an instance template,
implemented for this thesis.

The discretization seems to have a positive effect on the solutions found. Since only four
instances were used for testing, a more thorough evaluation of the effectof discretization would
be desirable. In particular, a comparison of the solution found by the algorithms with and without
the use of discretization on instances with a continuous positioning of the customers would be
interesting.

Although the Online Stochastic Algorithms in general perform well, the results are some-
what disappointing compared to the impression one had from the book of VanHentenryck and
Bent [2006], in particular because the discretization actually seems to improve the algorithms
described in the book. There can be several reason for the difference in results:

• The implementation of the algorithm for this thesis could be less efficient than thatof Van
Hentenryck and Bent.

• Although both the book and the articles of Van Hentenryck and Bent were consulted,
certain parts of the algorithms might have been misunderstood or misimplemented, which
could lead to worse results.

• The instances the algorithms tested on differs from this thesis to Van Hentenryck and Bent.
This includes both structure of the instances, and the precision of sampling.Unfortunately
it has not been possible to reconstruct their testbase, based on the information available in
the book and articles.

• In Van Hentenryck and Bent [2006], the Online Stochastic Algorithms wereonly com-
pared to NN and an algorithm very similar to LO. These find significantly worsesolutions

95



than NI used in this thesis, which this explains the difference of results of theOnline
Stochastic Algorithms over the oblivious online algorithms. Still, this does not fullyex-
plain the difference in results, since the internal ranking of the Online Stochastic Algo-
rithms according to the solution quality they find is also different.

The question remains whether it is desirable to use Online Stochastic Algorithms for the
solving an online VRP. As described, more thorough testing of the algorithms would be required
to answer this question properly, but based on this thesis, the answer is that in most cases it is.
In the end, it depends on how important it is to find good solutions, and how much time one
is willing to spend on implementing the algorithms. An implementation of the framework of
the online VRP as well as the NI algorithm would take around a week or so. For implementing
an Online Stochastic Algorithm with pruning, sampling of customers, consensus calculation
etc. neeeded for it, would take significantly longer. Furthermore, the precision of the available
stochastic data has a big influence on whether the Online Stochastic Algorithms isto prefer over
oblivious online algorithms.

The ideas described in Chapter 10: “Further Extensions and Perspectives” might help make
the algorithm more efficient and furthermore extend their use to model and solve more realis-
tic applications, and hence make them more suitable than a simple oblivious online algorithm.
These are natural extension to the model and algorithms, that would be veryinteresting to ex-
amine further.
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A Detailed Test Output

A.1 ILS Tuning: Graphs

A.1.1 Tuning Permutation by Neighbourhood
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Figure A.1: ILS: Permutation by Neighbourhood: Large graph of tuning on R110 from section 6.4.2
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A.1. ILS TUNING: GRAPHS
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Figure A.2: ILS: Permutation by Neighbourhood: Large graph of tuning on R204 from section 6.4.2
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Figure A.3: ILS: Permutation by Neighbourhood: Large graph of tuning on C107 from section 6.4.2
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APPENDIX A. DETAILED TEST OUTPUT
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Figure A.4: ILS: Permutation by Neighbourhood: Large graph of tuning on C203 from section 6.4.2
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Figure A.5: ILS: Permutation by Neighbourhood: Large graph of tuning on RC104 from section 6.4.2
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A.1. ILS TUNING: GRAPHS
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Figure A.6: ILS: Permutation by Neighbourhood: Large graph of tuning on RC206 from section 6.4.2

A.1.2 Tuning Permutation by Removal

0 5 10 15 20 25 30

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% removed
10% removed
15% removed
20% removed
25% removed

Test of Permutation by Removal on R110

Figure A.7: ILS: Permutation by Removal: Large graph of tuning on R110 from section 6.4.2
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APPENDIX A. DETAILED TEST OUTPUT
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Figure A.8: ILS: Permutation by Removal: Large graph of tuning on R204 from section 6.4.2
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Figure A.9: ILS: Permutation by Removal: Large graph of tuning on C107 from section 6.4.2
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A.1. ILS TUNING: GRAPHS
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Figure A.10: ILS: Permutation by Removal: Large graph of tuning on C203 from section 6.4.2
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Figure A.11: ILS: Permutation by Removal: Large graph of tuning on RC104 from section 6.4.2
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APPENDIX A. DETAILED TEST OUTPUT
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Figure A.12: ILS: Permutation by Removal: Large graph of tuning on RC206 from section 6.4.2

A.1.3 Tuning Permutation by Removal and Neighbourhood
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Figure A.13: ILS: Permutation by Removal and Permutation: Large graph of tuning on R110 from
section 6.4.2
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A.1. ILS TUNING: GRAPHS
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Figure A.14: ILS: Permutation by Removal and Permutation: Large graph of tuning on R204 from
section 6.4.2
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Figure A.15: ILS: Permutation by Removal and Permutation: Large graph of tuning on C107 from
section 6.4.2
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APPENDIX A. DETAILED TEST OUTPUT
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Figure A.16: ILS: Permutation by Removal and Permutation: Large graph of tuning on C203 from
section 6.4.2

0 5 10 15 20 25 30

50
00

60
00

70
00

80
00

Cpu (s)

O
bj

ec
tiv

e 
V

al
ue

5% rem., 5 exch.
5% rem., 15 exch.
10% rem., 5 exch.
10% rem., 15 exch.

Test of Permutation by Removal and Exchange on RC104

Figure A.17: ILS: Permutation by Removal and Permutation: Large graph of tuning on RC104 from
section 6.4.2
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A.2. DETAILED RESULTS OF REGRET TUNING
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Figure A.18: ILS: Permutation by Removal and Permutation: Large graph of tuning on RC206 from
section 6.4.2

A.2 Detailed Results of Regret Tuning

Tuning of Regret with Discretization Size 35

RR_PLAN.dat:
------------------
Unserved Length Obj Instance InstanceNr
3 1102.62 3001102622.00 180Loose 1
1 1133.04 1001133042.00 180Tight 2
0 673.39 673390.00 600Loose 3
2 842.71 2000842714.00 600Tight 4

RR_PLAN_SAMPLED.dat:
------------------
Unserved Length Obj Instance InstanceNr
2 1028.47 2001028474.00 180Loose 1
2 1176.95 2001176950.00 180Tight 2
1 725.55 1000725546.00 600Loose 3
1 815.24 1000815238.00 600Tight 4

RR_ROUTE.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1105.05 1001105051.00 180Loose 1
2 1117.85 2001117849.00 180Tight 2
0 670.13 670129.00 600Loose 3
0 834.14 834139.00 600Tight 4

RR_ROUTE_SAMPLED.dat:
------------------
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APPENDIX A. DETAILED TEST OUTPUT

Unserved Length Obj Instance InstanceNr
1 1152.21 1001152212.00 180Loose 1
0 1131.31 1131314.00 180Tight 2
0 711.60 711596.00 600Loose 3
0 882.55 882554.00 600Tight 4

R_PLAN.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 891.47 1000891471.00 180Loose 1
2 1040.74 2001040739.00 180Tight 2
0 655.92 655924.00 600Loose 3
3 721.26 3000721264.00 600Tight 4

R_ROUTE.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 964.30 1000964295.00 180Loose 1
0 1019.60 1019600.00 180Tight 2
0 606.01 606009.00 600Loose 3
2 764.27 2000764268.00 600Tight 4

Tuning of Regret with Discretization Size 24

RR_ROUTE_SAMPLED.dat:
------------------
Unserved Length Obj Instance InstanceNr
0 1046.34 1046343.00 180Loose 1
0 1228.84 1228838.00 180Tight 2
0 705.56 705562.00 600Loose 3
2 865.94 2000865939.00 600Tight 4

RR_ROUTE.dat:
-------------------
Unserved Length Obj Instance InstanceNr
2 1049.08 2001049080.00 180Loose 1
1 1095.66 1001095657.00 180Tight 2
0 731.38 731378.00 600Loose 3
0 777.68 777683.00 600Tight 4

RR_PLAN_SAMPLED.dat:
-------------------
Unserved Length Obj Instance InstanceNr
2 1098.15 2001098152.00 180Loose 1
1 1127.31 1001127306.00 180Tight 2
1 666.78 1000666782.00 600Loose 3
0 854.07 854069.00 600Tight 4

RR_PLAN.dat:
-------------------
Unserved Length Obj Instance InstanceNr
0 1154.21 1154205.00 180Loose 1
1 1195.04 1001195041.00 180Tight 2
0 679.78 679780.00 600Loose 3
1 803.02 1000803019.00 600Tight 4

R_ROUTE.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1007.54 1001007535.00 180Loose 1
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A.3. DETAILED RESULTS OF DISCRETIZATION TUNING

0 1018.47 1018471.00 180Tight 2
0 632.26 632256.00 600Loose 3
1 801.81 1000801805.00 600Tight 4

R_PLAN.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 947.48 1000947484.00 180Loose 1
0 1067.22 1067216.00 180Tight 2
0 694.49 694489.00 600Loose 3
2 877.87 2000877865.00 600Tight 4

A.3 Detailed Results of Discretization Tuning
Tuning of Discretization for CR

RR_70.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1067.10 1001067102.00 180Loose 1
2 1095.24 2001095235.00 180Tight 2
0 613.62 613621.00 600Loose 3
0 899.32 899320.00 600Tight 4

RR_35.dat:
------------------
Unserved Length Obj Instance InstanceNr
0 1078.77 1078769.00 180Loose 1
1 1276.54 1001276542.00 180Tight 2
0 636.52 636523.00 600Loose 3
0 920.48 920483.00 600Tight 4

RR_24.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1004.18 1001004176.00 180Loose 1
0 1195.10 1195099.00 180Tight 2
0 669.68 669677.00 600Loose 3
1 755.92 1000755915.00 600Tight 4

RR_18.dat:
------------------
Unserved Length Obj Instance InstanceNr
0 959.49 959492.00 180Loose 1
0 1080.98 1080976.00 180Tight 2
1 719.17 1000719166.00 600Loose 3
1 833.90 1000833897.00 600Tight 4

RR_10.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 979.27 1000979271.00 180Loose 1
1 1153.89 1001153894.00 180Tight 2
0 630.90 630902.00 600Loose 3
0 839.03 839034.00 600Tight 4

Tuning of Discretization for RR

RR_70.dat:
------------------
Unserved Length Obj Instance InstanceNr
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1 1063.16 1001063155.00 180Loose 1
1 1246.51 1001246512.00 180Tight 2
0 703.13 703134.00 600Loose 3
0 864.07 864072.00 600Tight 4

RR_35.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1080.83 1001080830.00 180Loose 1
2 1130.79 2001130794.00 180Tight 2
0 708.03 708030.00 600Loose 3
2 812.51 2000812513.00 600Tight 4

RR_24.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1036.54 1001036541.00 180Loose 1
1 1119.06 1001119061.00 180Tight 2
0 684.46 684455.00 600Loose 3
0 870.27 870269.00 600Tight 4

RR_18.dat:
------------------
Unserved Length Obj Instance InstanceNr
1 1173.41 1001173412.00 180Loose 1
1 1119.30 1001119298.00 180Tight 2
0 713.80 713796.00 600Loose 3
3 746.89 3000746890.00 600Tight 4

RR_10.dat:
------------------
Unserved Length Obj Instance InstanceNr
2 1049.83 2001049830.00 180Loose 1
1 1158.47 1001158468.00 180Tight 2
0 686.78 686781.00 600Loose 3
1 797.24 1000797236.00 600Tight 4

A.4 Detailed Results from Historical Sampling Tests

A.4.1 180LOOSE
Algorithm SamplingType Unassigned Length Obj Instance InstanceNr
C 0 3 934.74 3934739.00 180Loose 1
C 1 2 960.43 2960432.00 180Loose 1
C 2 1 982.47 1982470.00 180Loose 1
C 3 1 990.97 1990967.00 180Loose 1
C 4 1 900.91 1900907.00 180Loose 1
R 0 3 954.93 3954933.00 180Loose 1
R 1 2 1021.78 3021776.00 180Loose 1
R 2 4 927.51 4927512.00 180Loose 1
R 3 1 947.14 1947138.00 180Loose 1
R 4 0 913.42 913419.00 180Loose 1
CR 0 4 1050.41 5050412.00 180Loose 1
CR 1 2 1049.40 3049396.00 180Loose 1
CR 2 3 1064.66 4064664.00 180Loose 1
CR 3 2 1017.42 3017422.00 180Loose 1
CR 4 2 962.86 2962859.00 180Loose 1
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RR 0 3 1044.91 4044906.00 180Loose 1
RR 1 2 1060.95 3060952.00 180Loose 1
RR 2 3 1099.25 4099246.00 180Loose 1
RR 3 5 992.82 5992816.00 180Loose 1
RR 4 1 938.64 1938640.00 180Loose 1

A.4.2 180TIGHT
Algorithm SamplingType Unassigned Length Obj Instance InstanceNr
C 0 4 992.83 4992834.00 180Tight 2
C 1 2 1011.54 3011540.00 180Tight 2
C 2 2 967.90 2967897.00 180Tight 2
C 3 2 1021.06 3021060.00 180Tight 2
C 4 1 999.06 1999060.00 180Tight 2
R 0 3 1033.51 4033514.00 180Tight 2
R 1 4 920.81 4920814.00 180Tight 2
R 2 3 954.13 3954128.00 180Tight 2
R 3 3 964.84 3964842.00 180Tight 2
R 4 0 1007.16 1007163.00 180Tight 2
CR 0 6 1172.93 7172925.00 180Tight 2
CR 1 3 1116.77 4116773.00 180Tight 2
CR 2 1 1095.22 2095222.00 180Tight 2
CR 3 6 1150.88 7150883.00 180Tight 2
CR 4 1 1014.15 2014154.00 180Tight 2
RR 0 9 1102.96 10102956.00 180Tight 2
RR 1 3 1049.67 4049670.00 180Tight 2
RR 2 3 1102.86 4102862.00 180Tight 2
RR 3 2 1172.25 3172248.00 180Tight 2
RR 4 0 1033.74 1033736.00 180Tight 2

A.4.3 600LOOSE
Algorithm SamplingType Unassigned Length Obj Instance InstanceNr
C 0 1 594.72 1594721.00 600Loose 3
C 1 0 595.98 595981.00 600Loose 3
C 2 1 587.09 1587090.00 600Loose 3
C 3 0 620.63 620631.00 600Loose 3
C 4 0 599.86 599855.00 600Loose 3
R 0 0 690.46 690462.00 600Loose 3
R 1 0 680.88 680879.00 600Loose 3
R 2 0 743.67 743665.00 600Loose 3
R 3 0 782.37 782367.00 600Loose 3
R 4 0 683.49 683493.00 600Loose 3
CR 0 2 835.24 2835239.00 600Loose 3
CR 1 0 863.53 863532.00 600Loose 3
CR 2 0 970.31 970310.00 600Loose 3
CR 3 0 789.38 789384.00 600Loose 3
CR 4 0 555.04 555041.00 600Loose 3
RR 0 4 815.31 4815308.00 600Loose 3
RR 1 0 1039.61 1039614.00 600Loose 3
RR 2 0 1008.56 1008563.00 600Loose 3
RR 3 0 872.95 872953.00 600Loose 3
RR 4 0 657.28 657278.00 600Loose 3

A.4.4 600TIGHT
Algorithm SamplingType Unassigned Length Obj Instance InstanceNr
C 0 1 819.78 1819776.00 600Tight 4
C 1 1 758.66 1758663.00 600Tight 4
C 2 0 834.93 834930.00 600Tight 4
C 3 1 774.48 1774477.00 600Tight 4
C 4 0 730.74 730735.00 600Tight 4
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R 0 1 853.46 1853455.00 600Tight 4
R 1 2 790.55 2790545.00 600Tight 4
R 2 2 777.47 2777468.00 600Tight 4
R 3 1 752.36 1752356.00 600Tight 4
R 4 0 783.29 783291.00 600Tight 4
CR 0 2 1263.94 3263943.00 600Tight 4
CR 1 0 1172.01 1172007.00 600Tight 4
CR 2 0 1325.67 1325668.00 600Tight 4
CR 3 0 1251.81 1251808.00 600Tight 4
CR 4 1 767.88 1767884.00 600Tight 4
RR 0 1 1147.45 2147447.00 600Tight 4
RR 1 2 1246.77 3246766.00 600Tight 4
RR 2 1 1186.26 2186255.00 600Tight 4
RR 3 0 1249.93 1249930.00 600Tight 4
RR 4 1 799.70 1799703.00 600Tight 4

A.5 Detailed Results of the Comparison of Algorithms

A.5.1 180LOOSE
Offline solution

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
OFF 0 0 787468.0 787468.0 180Loose 1

Oblivious Online Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr runNr
RR 1 0 974.11 974113.00 180Loose 1 1
RR 1 0 960.16 960156.00 180Loose 1 2
RR 1 1 947.62 1947620.00 180Loose 1 3
RR 1 2 922.93 2922929.00 180Loose 1 5
RR 1 2 868.17 2868173.00 180Loose 1 4
RR 1 1 978.29 1978285.00 180Loose 1 6
RR 2 2 946.71 2946705.00 180Loose 1 2
RR 2 2 889.21 2889209.00 180Loose 1 1
RR 2 3 915.87 3915871.00 180Loose 1 3
RR 2 2 897.23 2897231.00 180Loose 1 5
RR 2 1 917.26 1917264.00 180Loose 1 6
RR 2 2 1005.61 3005607.00 180Loose 1 4
RR 3 2 950.71 2950709.00 180Loose 1 2
RR 3 1 917.45 1917454.00 180Loose 1 1
RR 3 1 922.93 1922928.00 180Loose 1 3
RR 3 2 938.22 2938221.00 180Loose 1 5
RR 3 1 904.94 1904939.00 180Loose 1 6
RR 3 1 884.84 1884836.00 180Loose 1 4
RR 4 1 986.14 1986140.00 180Loose 1 2
RR 4 2 991.30 2991298.00 180Loose 1 1
RR 4 4 882.49 4882490.00 180Loose 1 3
RR 4 2 862.86 2862863.00 180Loose 1 6
RR 4 2 887.68 2887675.00 180Loose 1 5
RR 4 1 933.71 1933705.00 180Loose 1 4
RR 5 2 923.31 2923308.00 180Loose 1 2
RR 5 2 835.12 2835119.00 180Loose 1 3
RR 5 3 925.02 3925024.00 180Loose 1 6
RR 5 1 866.70 1866701.00 180Loose 1 5
RR 5 2 983.80 2983802.00 180Loose 1 1
RR 5 1 878.14 1878143.00 180Loose 1 4
C 1 1 873.09 1873090.00 180Loose 1 2
C 1 1 899.35 1899349.00 180Loose 1 6
C 1 1 924.22 1924216.00 180Loose 1 5
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C 1 2 842.02 2842018.00 180Loose 1 3
C 1 1 924.49 1924493.00 180Loose 1 1
C 1 1 966.00 1966000.00 180Loose 1 4
C 2 1 893.24 1893236.00 180Loose 1 2
C 2 2 868.79 2868793.00 180Loose 1 6
C 2 3 877.82 3877823.00 180Loose 1 3
C 2 2 886.94 2886943.00 180Loose 1 5
C 2 1 961.01 1961009.00 180Loose 1 1
C 2 1 979.17 1979167.00 180Loose 1 4
C 3 2 834.43 2834429.00 180Loose 1 2
C 3 2 898.36 2898364.00 180Loose 1 6
C 3 3 886.67 3886673.00 180Loose 1 5
C 3 1 951.29 1951286.00 180Loose 1 3
C 3 1 928.70 1928701.00 180Loose 1 1
C 3 1 892.40 1892398.00 180Loose 1 4
C 4 0 944.24 944238.00 180Loose 1 2
C 4 0 966.79 966794.00 180Loose 1 6
C 4 1 958.70 1958698.00 180Loose 1 5
C 4 0 927.68 927675.00 180Loose 1 3
C 4 1 896.39 1896390.00 180Loose 1 1
C 4 1 875.65 1875645.00 180Loose 1 4
C 5 1 958.41 1958412.00 180Loose 1 2
C 5 1 932.35 1932353.00 180Loose 1 6
C 5 1 933.92 1933924.00 180Loose 1 5
C 5 0 992.15 992147.00 180Loose 1 3
C 5 2 860.78 2860782.00 180Loose 1 1
C 5 1 931.30 1931304.00 180Loose 1 4
R 1 2 948.04 2948040.00 180Loose 1 2
R 1 2 886.02 2886015.00 180Loose 1 6
R 1 1 894.48 1894481.00 180Loose 1 5
R 1 1 927.59 1927588.00 180Loose 1 3
R 1 1 954.71 1954711.00 180Loose 1 1
R 1 1 955.96 1955962.00 180Loose 1 4
R 2 2 963.58 2963576.00 180Loose 1 2
R 2 1 946.68 1946675.00 180Loose 1 6
R 2 2 868.94 2868938.00 180Loose 1 5
R 2 2 851.91 2851906.00 180Loose 1 3
R 2 1 946.71 1946707.00 180Loose 1 1
R 2 0 881.38 881381.00 180Loose 1 4
R 3 2 987.14 2987144.00 180Loose 1 2
R 3 1 932.66 1932662.00 180Loose 1 6
R 3 2 900.93 2900932.00 180Loose 1 5
R 3 1 971.10 1971104.00 180Loose 1 3
R 3 2 908.45 2908447.00 180Loose 1 1
R 3 1 977.21 1977209.00 180Loose 1 4
R 4 1 949.60 1949603.00 180Loose 1 2
R 4 1 957.71 1957710.00 180Loose 1 6
R 4 1 883.12 1883123.00 180Loose 1 5
R 4 1 890.00 1889999.00 180Loose 1 3
R 4 2 990.12 2990118.00 180Loose 1 1
R 4 0 916.23 916233.00 180Loose 1 4
R 5 2 898.72 2898724.00 180Loose 1 2
R 5 3 985.82 3985824.00 180Loose 1 6
R 5 2 901.41 2901407.00 180Loose 1 5
R 5 1 984.74 1984736.00 180Loose 1 3
R 5 3 948.72 3948724.00 180Loose 1 1
R 5 2 923.76 2923764.00 180Loose 1 4
CR 1 1 867.67 1867666.00 180Loose 1 2
CR 1 1 940.63 1940634.00 180Loose 1 6
CR 1 1 887.58 1887581.00 180Loose 1 5
CR 1 2 885.18 2885180.00 180Loose 1 3
CR 1 0 852.45 852451.00 180Loose 1 1
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CR 1 0 884.93 884931.00 180Loose 1 4
CR 2 1 927.04 1927040.00 180Loose 1 2
CR 2 2 983.11 2983105.00 180Loose 1 6
CR 2 1 978.08 1978083.00 180Loose 1 5
CR 2 2 888.27 2888272.00 180Loose 1 3
CR 2 3 821.04 3821042.00 180Loose 1 1
CR 2 2 978.78 2978777.00 180Loose 1 4
CR 3 0 895.65 895649.00 180Loose 1 2
CR 3 1 928.60 1928597.00 180Loose 1 6
CR 3 2 908.07 2908068.00 180Loose 1 5
CR 3 2 889.90 2889896.00 180Loose 1 3
CR 3 2 930.04 2930035.00 180Loose 1 1
CR 3 1 891.85 1891847.00 180Loose 1 4
CR 4 1 909.04 1909042.00 180Loose 1 2
CR 4 2 873.68 2873682.00 180Loose 1 6
CR 4 1 912.30 1912297.00 180Loose 1 5
CR 4 0 969.23 969226.00 180Loose 1 1
CR 4 0 964.06 964064.00 180Loose 1 3
CR 4 2 883.53 2883534.00 180Loose 1 4
CR 5 2 980.98 2980982.00 180Loose 1 2
CR 5 2 918.50 2918501.00 180Loose 1 6
CR 5 1 912.84 1912836.00 180Loose 1 5
CR 5 1 877.20 1877202.00 180Loose 1 3
CR 5 2 887.74 2887743.00 180Loose 1 1
CR 5 2 926.30 2926304.00 180Loose 1 4
RR 1 2 928.57 2928566.00 180Loose 1 0
RR 2 3 1008.32 4008323.00 180Loose 1 0
RR 3 1 921.76 1921756.00 180Loose 1 0
RR 4 1 946.42 1946423.00 180Loose 1 0
RR 5 2 1100.75 3100751.00 180Loose 1 0
C 1 3 825.42 3825421.00 180Loose 1 0
C 2 2 906.46 2906461.00 180Loose 1 0
C 3 1 1004.80 2004801.00 180Loose 1 0
C 4 1 931.95 1931950.00 180Loose 1 0
C 5 2 907.52 2907519.00 180Loose 1 0
R 1 1 925.50 1925500.00 180Loose 1 0
R 2 2 893.52 2893524.00 180Loose 1 0
R 3 1 916.56 1916555.00 180Loose 1 0
R 4 1 949.74 1949739.00 180Loose 1 0
R 5 1 920.88 1920882.00 180Loose 1 0
CR 1 2 874.54 2874540.00 180Loose 1 0
CR 2 2 889.95 2889951.00 180Loose 1 0
CR 3 3 895.98 3895975.00 180Loose 1 0
CR 4 1 940.96 1940962.00 180Loose 1 0
CR 5 2 872.38 2872378.00 180Loose 1 0

Online Stochastic Algorithm Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
NN 1 2 1254.65 3254654.00 180Loose 1
NN 2 2 1274.82 3274815.00 180Loose 1
NN 3 2 1254.65 3254654.00 180Loose 1
NN 4 4 1237.25 5237253.00 180Loose 1
NN 5 4 1254.04 5254044.00 180Loose 1
NI 1 1 968.79 1968794.00 180Loose 1
NI 2 1 971.67 1971674.00 180Loose 1
NI 3 1 968.79 1968794.00 180Loose 1
NI 4 2 1036.26 3036262.00 180Loose 1
NI 5 2 1073.13 3073132.00 180Loose 1
LO 1 15 740.28 15740284.00 180Loose 1
LO 2 15 759.42 15759419.00 180Loose 1
LO 3 15 740.28 15740284.00 180Loose 1
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LO 4 16 771.99 16771989.00 180Loose 1
LO 5 19 741.61 19741607.00 180Loose 1

A.5.2 180TIGHT
Offline solution

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
OFF 0 0 959971.0 959971.0 180Tight 2

Oblivious Online Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr runNr
RR 1 3 961.30 3961297.00 180Tight 2 5
RR 1 2 1002.97 3002968.00 180Tight 2 2
RR 1 1 1019.52 2019517.00 180Tight 2 1
RR 1 1 955.75 1955751.00 180Tight 2 6
RR 1 0 1002.51 1002511.00 180Tight 2 4
RR 1 1 1004.25 2004254.00 180Tight 2 3
RR 2 2 1001.07 3001065.00 180Tight 2 5
RR 2 1 1046.43 2046430.00 180Tight 2 2
RR 2 2 958.60 2958603.00 180Tight 2 1
RR 2 1 972.84 1972838.00 180Tight 2 6
RR 2 3 925.04 3925035.00 180Tight 2 4
RR 2 2 952.83 2952830.00 180Tight 2 3
RR 3 1 1024.99 2024992.00 180Tight 2 5
RR 3 0 1081.53 1081528.00 180Tight 2 2
RR 3 1 1109.20 2109203.00 180Tight 2 1
RR 3 2 1068.41 3068409.00 180Tight 2 6
RR 3 1 955.25 1955254.00 180Tight 2 4
RR 3 0 1071.43 1071428.00 180Tight 2 3
RR 4 0 1009.34 1009339.00 180Tight 2 5
RR 4 1 1001.61 2001612.00 180Tight 2 2
RR 4 1 1037.99 2037987.00 180Tight 2 1
RR 4 1 1001.72 2001718.00 180Tight 2 6
RR 4 2 1010.10 3010098.00 180Tight 2 4
RR 4 0 1083.15 1083151.00 180Tight 2 3
RR 5 1 1085.27 2085271.00 180Tight 2 5
RR 5 0 989.74 989740.00 180Tight 2 2
RR 5 1 982.46 1982462.00 180Tight 2 1
RR 5 1 1007.98 2007984.00 180Tight 2 6
RR 5 0 1012.79 1012793.00 180Tight 2 4
RR 5 0 1007.69 1007692.00 180Tight 2 3
C 1 1 985.47 1985468.00 180Tight 2 5
C 1 0 978.00 978004.00 180Tight 2 2
C 1 0 989.07 989065.00 180Tight 2 1
C 1 0 1025.77 1025773.00 180Tight 2 4
C 1 1 998.13 1998131.00 180Tight 2 6
C 1 1 968.35 1968352.00 180Tight 2 3
C 2 1 969.48 1969483.00 180Tight 2 5
C 2 1 967.74 1967735.00 180Tight 2 2
C 2 0 964.78 964775.00 180Tight 2 1
C 2 2 973.37 2973370.00 180Tight 2 4
C 2 0 1025.77 1025771.00 180Tight 2 6
C 2 0 1032.52 1032520.00 180Tight 2 3
C 3 0 967.93 967932.00 180Tight 2 5
C 3 0 1012.41 1012407.00 180Tight 2 2
C 3 0 1047.93 1047930.00 180Tight 2 1
C 3 1 943.62 1943622.00 180Tight 2 6
C 3 0 1007.46 1007460.00 180Tight 2 4
C 4 0 992.30 992300.00 180Tight 2 5
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C 4 0 990.44 990443.00 180Tight 2 2
C 4 0 990.83 990825.00 180Tight 2 1
C 4 0 1016.63 1016632.00 180Tight 2 4
C 3 0 990.16 990164.00 180Tight 2 3
C 4 0 1011.13 1011129.00 180Tight 2 6
C 5 0 1015.62 1015618.00 180Tight 2 5
C 5 0 978.34 978343.00 180Tight 2 2
C 5 1 950.52 1950515.00 180Tight 2 1
C 5 0 1011.43 1011434.00 180Tight 2 4
C 5 0 982.55 982550.00 180Tight 2 6
C 4 0 980.11 980110.00 180Tight 2 3
R 1 0 961.09 961090.00 180Tight 2 5
R 1 1 966.33 1966325.00 180Tight 2 2
R 1 1 945.74 1945743.00 180Tight 2 1
R 1 0 959.05 959050.00 180Tight 2 4
R 1 0 935.47 935467.00 180Tight 2 6
C 5 0 994.04 994042.00 180Tight 2 3
R 2 0 1011.06 1011060.00 180Tight 2 5
R 2 0 957.27 957271.00 180Tight 2 2
R 2 0 1017.83 1017834.00 180Tight 2 1
R 2 0 996.30 996295.00 180Tight 2 4
R 2 1 968.37 1968366.00 180Tight 2 6
R 1 0 1039.30 1039299.00 180Tight 2 3
R 3 0 1002.81 1002814.00 180Tight 2 5
R 3 0 1049.60 1049595.00 180Tight 2 2
R 3 0 976.18 976184.00 180Tight 2 1
R 3 0 989.64 989639.00 180Tight 2 4
R 3 1 967.11 1967106.00 180Tight 2 6
R 2 0 1047.30 1047303.00 180Tight 2 3
R 4 0 1011.13 1011129.00 180Tight 2 5
R 4 1 1011.08 2011078.00 180Tight 2 2
R 4 0 984.51 984510.00 180Tight 2 1
R 4 1 998.32 1998315.00 180Tight 2 4
R 4 1 955.94 1955942.00 180Tight 2 6
R 3 1 941.58 1941582.00 180Tight 2 3
R 5 1 965.73 1965729.00 180Tight 2 5
R 5 0 959.05 959050.00 180Tight 2 2
R 5 0 994.23 994233.00 180Tight 2 1
R 5 0 991.25 991251.00 180Tight 2 4
R 5 1 969.74 1969737.00 180Tight 2 6
R 4 0 1036.54 1036540.00 180Tight 2 3
CR 1 3 999.65 3999654.00 180Tight 2 5
CR 1 3 987.03 3987027.00 180Tight 2 2
CR 1 1 943.50 1943495.00 180Tight 2 1
CR 1 2 1038.97 3038974.00 180Tight 2 4
CR 1 1 1007.82 2007818.00 180Tight 2 6
R 5 1 972.85 1972845.00 180Tight 2 3
CR 2 2 991.12 2991124.00 180Tight 2 5
CR 2 2 1000.17 3000167.00 180Tight 2 2
CR 2 1 1072.97 2072968.00 180Tight 2 1
CR 2 3 1014.39 4014385.00 180Tight 2 4
CR 2 2 1034.63 3034625.00 180Tight 2 6
CR 1 2 1012.60 3012600.00 180Tight 2 3
CR 3 2 979.58 2979582.00 180Tight 2 5
CR 3 0 1031.96 1031963.00 180Tight 2 2
CR 3 2 951.18 2951178.00 180Tight 2 1
CR 3 1 1066.87 2066866.00 180Tight 2 4
CR 3 0 983.52 983516.00 180Tight 2 6
CR 4 1 973.36 1973360.00 180Tight 2 5
CR 2 3 968.46 3968455.00 180Tight 2 3
CR 4 1 1026.79 2026789.00 180Tight 2 2
CR 4 1 1041.03 2041033.00 180Tight 2 1
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CR 4 1 1020.46 2020455.00 180Tight 2 4
CR 4 3 1052.41 4052413.00 180Tight 2 6
CR 5 2 951.47 2951466.00 180Tight 2 5
CR 3 2 995.00 2994996.00 180Tight 2 3
CR 5 3 913.71 3913705.00 180Tight 2 2
CR 5 1 961.16 1961158.00 180Tight 2 1
CR 5 1 1019.85 2019848.00 180Tight 2 4
CR 5 2 1047.68 3047681.00 180Tight 2 6
CR 4 1 1069.31 2069306.00 180Tight 2 3
CR 5 0 1025.57 1025569.00 180Tight 2 3
RR 1 1 999.30 1999304.00 180Tight 2 0
RR 2 1 1082.97 2082970.00 180Tight 2 0
RR 3 2 1006.76 3006761.00 180Tight 2 0
RR 4 2 1082.03 3082033.00 180Tight 2 0
RR 5 1 1026.87 2026867.00 180Tight 2 0
C 1 0 1008.67 1008673.00 180Tight 2 0
C 2 0 962.80 962796.00 180Tight 2 0
C 3 0 983.88 983878.00 180Tight 2 0
C 4 0 1063.38 1063384.00 180Tight 2 0
C 5 0 992.72 992722.00 180Tight 2 0
R 1 0 964.78 964775.00 180Tight 2 0
R 2 0 989.07 989065.00 180Tight 2 0
R 3 0 1011.35 1011353.00 180Tight 2 0
R 4 1 937.83 1937830.00 180Tight 2 0
R 5 0 995.36 995355.00 180Tight 2 0
CR 1 1 1000.25 2000251.00 180Tight 2 0
CR 2 2 1048.23 3048234.00 180Tight 2 0
CR 3 2 949.89 2949886.00 180Tight 2 0
CR 4 3 1032.34 4032341.00 180Tight 2 0
CR 5 1 1020.34 2020337.00 180Tight 2 0

Online Stochastic Algorithm Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
NN 1 4 1237.58 5237582.00 180Tight 2
NN 2 4 1237.58 5237582.00 180Tight 2
NN 3 4 1237.58 5237582.00 180Tight 2
NN 4 4 1252.54 5252544.00 180Tight 2
NN 5 5 1269.99 6269992.00 180Tight 2
NI 1 1 1064.53 2064532.00 180Tight 2
NI 2 1 1064.53 2064532.00 180Tight 2
NI 3 1 1064.53 2064532.00 180Tight 2
NI 4 1 1064.53 2064532.00 180Tight 2
NI 5 2 1052.21 3052211.00 180Tight 2
LO 1 5 1008.20 6008195.00 180Tight 2
LO 2 5 1008.20 6008195.00 180Tight 2
LO 3 5 1008.20 6008195.00 180Tight 2
LO 4 6 1005.99 7005990.00 180Tight 2
LO 5 5 1028.02 6028020.00 180Tight 2

A.5.3 600LOOSE
Offline solution

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
OFF 0 0 489621.0 489621.0 600Loose 3

Oblivious Online Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr runNr
RR 1 0 619.92 619917.00 600Loose 3 5
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RR 1 0 680.46 680455.00 600Loose 3 4
RR 1 0 645.43 645432.00 600Loose 3 2
RR 1 0 746.71 746709.00 600Loose 3 1
RR 1 0 645.61 645611.00 600Loose 3 6
RR 1 0 613.91 613912.00 600Loose 3 3
RR 2 0 732.50 732498.00 600Loose 3 2
RR 2 0 655.12 655117.00 600Loose 3 6
RR 2 0 617.39 617387.00 600Loose 3 4
RR 2 0 655.01 655013.00 600Loose 3 5
RR 2 0 613.12 613117.00 600Loose 3 1
RR 2 0 662.20 662196.00 600Loose 3 3
RR 3 0 649.03 649031.00 600Loose 3 2
RR 3 1 762.92 1762924.00 600Loose 3 4
RR 3 0 783.94 783941.00 600Loose 3 6
RR 3 0 651.45 651448.00 600Loose 3 5
RR 3 0 628.06 628058.00 600Loose 3 1
RR 3 0 659.76 659762.00 600Loose 3 3
RR 4 0 640.43 640428.00 600Loose 3 2
RR 4 0 629.56 629555.00 600Loose 3 4
RR 4 0 662.92 662918.00 600Loose 3 5
RR 4 0 678.79 678786.00 600Loose 3 1
RR 4 0 631.64 631643.00 600Loose 3 6
RR 4 0 657.31 657314.00 600Loose 3 3
RR 5 0 645.06 645061.00 600Loose 3 2
RR 5 0 697.69 697688.00 600Loose 3 4
RR 5 0 695.62 695623.00 600Loose 3 5
RR 5 0 745.35 745349.00 600Loose 3 6
RR 5 0 696.06 696055.00 600Loose 3 1
RR 5 0 650.25 650250.00 600Loose 3 3
C 1 0 555.93 555927.00 600Loose 3 2
C 1 0 572.53 572533.00 600Loose 3 4
C 1 0 529.17 529169.00 600Loose 3 5
C 1 0 542.77 542771.00 600Loose 3 6
C 1 0 507.92 507922.00 600Loose 3 1
C 1 0 505.20 505201.00 600Loose 3 3
C 2 0 534.22 534220.00 600Loose 3 2
C 2 0 574.18 574180.00 600Loose 3 4
C 2 0 590.25 590248.00 600Loose 3 5
C 2 0 586.49 586486.00 600Loose 3 6
C 2 0 542.92 542917.00 600Loose 3 1
C 3 0 551.50 551495.00 600Loose 3 2
C 3 0 540.97 540972.00 600Loose 3 5
C 3 0 536.63 536632.00 600Loose 3 4
C 3 0 525.19 525188.00 600Loose 3 6
C 2 0 561.86 561859.00 600Loose 3 3
C 3 0 562.31 562307.00 600Loose 3 1
C 4 0 674.07 674065.00 600Loose 3 2
C 4 0 633.83 633834.00 600Loose 3 5
C 4 0 570.92 570919.00 600Loose 3 4
C 4 0 610.54 610540.00 600Loose 3 6
C 4 0 590.03 590026.00 600Loose 3 1
C 3 0 552.62 552622.00 600Loose 3 3
C 5 0 755.31 755308.00 600Loose 3 5
C 5 2 735.43 2735427.00 600Loose 3 2
C 5 0 645.30 645297.00 600Loose 3 4
C 5 1 722.67 1722669.00 600Loose 3 6
C 5 0 615.68 615680.00 600Loose 3 1
C 4 0 592.32 592319.00 600Loose 3 3
R 1 0 680.13 680125.00 600Loose 3 5
R 1 0 607.69 607691.00 600Loose 3 2
R 1 0 555.79 555794.00 600Loose 3 4
R 1 0 671.47 671465.00 600Loose 3 6
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R 1 0 623.96 623964.00 600Loose 3 1
C 5 0 702.72 702724.00 600Loose 3 3
R 2 0 732.11 732109.00 600Loose 3 5
R 2 0 689.10 689100.00 600Loose 3 4
R 2 0 613.51 613512.00 600Loose 3 2
R 2 0 676.47 676468.00 600Loose 3 6
R 2 0 610.24 610240.00 600Loose 3 1
R 3 0 645.73 645732.00 600Loose 3 5
R 3 0 651.10 651104.00 600Loose 3 4
R 3 0 677.34 677335.00 600Loose 3 2
R 3 0 666.84 666836.00 600Loose 3 6
R 1 0 707.71 707708.00 600Loose 3 3
R 3 0 596.38 596382.00 600Loose 3 1
R 4 0 648.18 648175.00 600Loose 3 5
R 4 0 694.79 694787.00 600Loose 3 4
R 4 0 717.55 717547.00 600Loose 3 2
R 4 0 659.02 659018.00 600Loose 3 6
R 2 0 671.79 671788.00 600Loose 3 3
R 4 0 657.91 657914.00 600Loose 3 1
R 5 0 661.00 660998.00 600Loose 3 5
R 5 3 777.36 3777357.00 600Loose 3 4
R 5 0 738.29 738293.00 600Loose 3 2
R 5 1 719.56 1719560.00 600Loose 3 6
R 3 0 633.66 633664.00 600Loose 3 3
R 5 2 736.65 2736650.00 600Loose 3 1
CR 1 0 588.23 588225.00 600Loose 3 5
CR 1 0 550.79 550790.00 600Loose 3 4
CR 1 0 584.02 584024.00 600Loose 3 2
CR 1 0 615.17 615167.00 600Loose 3 6
CR 1 0 597.04 597035.00 600Loose 3 1
R 4 0 746.09 746088.00 600Loose 3 3
CR 2 0 618.11 618109.00 600Loose 3 5
CR 2 0 602.98 602976.00 600Loose 3 4
CR 2 0 610.85 610853.00 600Loose 3 2
CR 2 0 611.00 610999.00 600Loose 3 6
CR 2 0 587.65 587654.00 600Loose 3 1
R 5 0 720.85 720852.00 600Loose 3 3
CR 3 0 565.88 565876.00 600Loose 3 5
CR 3 0 586.66 586663.00 600Loose 3 4
CR 3 0 569.20 569195.00 600Loose 3 2
CR 3 0 586.97 586966.00 600Loose 3 6
CR 3 0 574.15 574151.00 600Loose 3 1
CR 1 1 606.82 1606816.00 600Loose 3 3
CR 4 0 643.63 643627.00 600Loose 3 5
CR 4 0 646.13 646131.00 600Loose 3 4
CR 4 0 688.10 688101.00 600Loose 3 2
CR 4 0 654.22 654223.00 600Loose 3 6
CR 4 0 646.06 646064.00 600Loose 3 1
CR 2 0 617.04 617037.00 600Loose 3 3
CR 5 0 683.18 683176.00 600Loose 3 5
CR 5 0 619.72 619720.00 600Loose 3 4
CR 5 0 617.28 617275.00 600Loose 3 2
CR 5 1 647.23 1647234.00 600Loose 3 6
CR 5 0 618.13 618130.00 600Loose 3 1
CR 3 0 603.62 603623.00 600Loose 3 3
CR 4 0 605.42 605415.00 600Loose 3 3
CR 5 0 706.06 706064.00 600Loose 3 3
RR 1 0 586.00 585999.00 600Loose 3 0
RR 2 0 669.22 669217.00 600Loose 3 0
RR 3 0 697.29 697286.00 600Loose 3 0
RR 4 0 647.88 647879.00 600Loose 3 0
RR 5 0 653.11 653111.00 600Loose 3 0
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C 1 0 507.92 507922.00 600Loose 3 0
C 2 0 596.84 596840.00 600Loose 3 0
C 3 0 525.40 525403.00 600Loose 3 0
C 4 0 587.46 587459.00 600Loose 3 0
C 5 1 681.45 1681452.00 600Loose 3 0
R 1 0 575.61 575610.00 600Loose 3 0
R 2 0 669.13 669131.00 600Loose 3 0
R 3 0 754.33 754329.00 600Loose 3 0
R 4 0 641.60 641595.00 600Loose 3 0
R 5 1 719.44 1719439.00 600Loose 3 0
CR 1 0 594.71 594705.00 600Loose 3 0
CR 2 0 602.86 602856.00 600Loose 3 0
CR 3 0 613.60 613602.00 600Loose 3 0
CR 4 0 612.02 612018.00 600Loose 3 0
CR 5 1 719.13 1719134.00 600Loose 3 0

Online Stochastic Algorithm Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
NN 1 1 1312.34 2312340.00 600Loose 3
NN 2 1 1298.47 2298473.00 600Loose 3
NN 3 1 1298.47 2298473.00 600Loose 3
NN 4 1 1281.46 2281455.00 600Loose 3
NN 5 1 1495.67 2495668.00 600Loose 3
NI 1 0 670.05 670049.00 600Loose 3
NI 2 0 721.48 721484.00 600Loose 3
NI 3 0 764.08 764080.00 600Loose 3
NI 4 0 705.22 705219.00 600Loose 3
NI 5 0 745.94 745942.00 600Loose 3
LO 1 3 568.27 3568268.00 600Loose 3
LO 2 4 565.09 4565094.00 600Loose 3
LO 3 4 561.96 4561961.00 600Loose 3
LO 4 7 727.12 7727115.00 600Loose 3
LO 5 7 610.32 7610320.00 600Loose 3

A.5.4 600TIGHT
Offline solution

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
OFF 0 0 638965.0 638965.0 600Tight 4

Oblivious Online Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr runNr
RR 1 2 748.45 2748449.00 600Tight 4 2
RR 1 0 772.43 772430.00 600Tight 4 5
RR 1 0 788.02 788018.00 600Tight 4 3
RR 1 1 749.26 1749259.00 600Tight 4 1
RR 1 0 768.46 768461.00 600Tight 4 6
RR 1 1 767.52 1767515.00 600Tight 4 4
RR 2 0 756.14 756139.00 600Tight 4 2
RR 2 1 771.66 1771660.00 600Tight 4 5
RR 2 2 725.64 2725641.00 600Tight 4 1
RR 2 0 743.41 743409.00 600Tight 4 6
RR 2 0 766.05 766045.00 600Tight 4 3
RR 2 0 728.69 728694.00 600Tight 4 4
RR 3 0 758.19 758192.00 600Tight 4 1
RR 3 3 760.41 3760413.00 600Tight 4 5
RR 3 0 789.85 789854.00 600Tight 4 2
RR 3 0 841.62 841617.00 600Tight 4 6

123



A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

RR 3 1 901.53 1901532.00 600Tight 4 3
RR 3 1 829.06 1829056.00 600Tight 4 4
RR 4 0 887.79 887792.00 600Tight 4 1
RR 4 0 700.91 700905.00 600Tight 4 2
RR 4 0 790.20 790197.00 600Tight 4 5
RR 4 1 761.08 1761080.00 600Tight 4 6
RR 4 1 812.23 1812233.00 600Tight 4 3
RR 4 1 862.11 1862110.00 600Tight 4 4
RR 5 0 821.71 821706.00 600Tight 4 1
RR 5 0 775.57 775571.00 600Tight 4 2
RR 5 0 805.91 805914.00 600Tight 4 5
RR 5 0 872.65 872646.00 600Tight 4 6
RR 5 0 793.18 793181.00 600Tight 4 3
RR 5 1 836.37 1836365.00 600Tight 4 4
C 1 0 728.05 728052.00 600Tight 4 1
C 1 0 761.74 761744.00 600Tight 4 2
C 1 1 732.08 1732078.00 600Tight 4 5
C 1 0 782.28 782276.00 600Tight 4 6
C 1 0 730.76 730764.00 600Tight 4 3
C 1 0 762.79 762785.00 600Tight 4 4
C 2 0 754.10 754100.00 600Tight 4 1
C 2 0 758.66 758657.00 600Tight 4 2
C 2 0 802.60 802599.00 600Tight 4 5
C 2 0 879.25 879246.00 600Tight 4 6
C 2 2 808.68 2808679.00 600Tight 4 3
C 2 1 913.29 1913293.00 600Tight 4 4
C 3 0 774.34 774336.00 600Tight 4 1
C 3 0 758.92 758924.00 600Tight 4 2
C 3 0 742.43 742428.00 600Tight 4 5
C 3 0 723.53 723527.00 600Tight 4 6
C 3 0 767.39 767393.00 600Tight 4 3
C 3 0 884.54 884539.00 600Tight 4 4
C 4 2 743.12 2743120.00 600Tight 4 1
C 4 0 709.45 709449.00 600Tight 4 2
C 4 1 742.26 1742255.00 600Tight 4 5
C 4 1 744.33 1744333.00 600Tight 4 6
C 4 0 765.78 765777.00 600Tight 4 3
C 4 1 735.94 1735943.00 600Tight 4 4
C 5 3 858.72 3858715.00 600Tight 4 1
C 5 2 843.88 2843877.00 600Tight 4 2
C 5 1 745.46 1745463.00 600Tight 4 6
C 5 1 813.70 1813697.00 600Tight 4 5
C 5 1 823.01 1823005.00 600Tight 4 3
C 5 1 895.38 1895377.00 600Tight 4 4
R 1 0 849.21 849205.00 600Tight 4 2
R 1 0 820.89 820890.00 600Tight 4 1
R 1 1 742.82 1742820.00 600Tight 4 6
R 1 0 738.17 738166.00 600Tight 4 5
R 1 1 865.60 1865600.00 600Tight 4 3
R 1 1 789.42 1789416.00 600Tight 4 4
R 2 0 829.82 829818.00 600Tight 4 1
R 2 0 779.16 779157.00 600Tight 4 2
R 2 1 749.95 1749952.00 600Tight 4 6
R 2 1 807.70 1807702.00 600Tight 4 3
R 2 0 784.69 784686.00 600Tight 4 5
R 2 1 821.33 1821326.00 600Tight 4 4
R 3 1 755.99 1755993.00 600Tight 4 1
R 3 0 733.16 733157.00 600Tight 4 2
R 3 0 748.24 748244.00 600Tight 4 6
R 3 0 784.40 784395.00 600Tight 4 5
R 3 2 739.54 2739541.00 600Tight 4 3
R 3 0 781.41 781414.00 600Tight 4 4
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R 4 1 724.01 1724006.00 600Tight 4 1
R 4 2 790.89 2790891.00 600Tight 4 2
R 4 0 752.82 752816.00 600Tight 4 6
R 4 1 751.21 1751212.00 600Tight 4 5
R 4 0 741.64 741643.00 600Tight 4 3
R 4 1 792.68 1792675.00 600Tight 4 4
R 5 2 770.69 2770689.00 600Tight 4 1
R 5 1 821.46 1821459.00 600Tight 4 2
R 5 1 835.35 1835354.00 600Tight 4 6
R 5 2 846.77 2846773.00 600Tight 4 5
R 5 2 863.85 2863846.00 600Tight 4 3
R 5 4 759.57 4759574.00 600Tight 4 4
CR 1 0 714.80 714801.00 600Tight 4 1
CR 1 1 761.55 1761552.00 600Tight 4 2
CR 1 0 777.79 777787.00 600Tight 4 6
CR 1 0 753.41 753408.00 600Tight 4 5
CR 1 0 847.83 847830.00 600Tight 4 3
CR 1 0 907.43 907428.00 600Tight 4 4
CR 2 1 790.47 1790471.00 600Tight 4 1
CR 2 0 739.28 739275.00 600Tight 4 2
CR 2 1 818.21 1818211.00 600Tight 4 6
CR 2 2 716.53 2716533.00 600Tight 4 5
CR 2 1 785.20 1785201.00 600Tight 4 3
CR 2 0 917.57 917569.00 600Tight 4 4
CR 3 2 788.51 2788509.00 600Tight 4 1
CR 3 0 752.04 752038.00 600Tight 4 2
CR 3 0 772.89 772888.00 600Tight 4 6
CR 3 0 755.25 755252.00 600Tight 4 5
CR 3 0 844.83 844827.00 600Tight 4 3
CR 3 0 840.43 840428.00 600Tight 4 4
CR 4 1 784.26 1784259.00 600Tight 4 1
CR 4 1 760.64 1760643.00 600Tight 4 2
CR 4 0 750.95 750947.00 600Tight 4 6
CR 4 0 725.25 725245.00 600Tight 4 5
CR 4 0 783.29 783291.00 600Tight 4 3
CR 4 0 840.64 840642.00 600Tight 4 4
CR 5 0 811.20 811196.00 600Tight 4 1
CR 5 0 789.27 789266.00 600Tight 4 2
CR 5 0 801.21 801206.00 600Tight 4 6
CR 5 0 890.07 890065.00 600Tight 4 3
CR 5 0 799.64 799640.00 600Tight 4 5
CR 5 0 835.07 835065.00 600Tight 4 4
RR 1 0 819.95 819949.00 600Tight 4 0
RR 2 0 804.85 804852.00 600Tight 4 0
RR 3 2 765.13 2765134.00 600Tight 4 0
RR 4 1 789.17 1789173.00 600Tight 4 0
RR 5 1 831.47 1831467.00 600Tight 4 0
C 1 1 731.18 1731181.00 600Tight 4 0
C 2 0 827.92 827922.00 600Tight 4 0
C 3 0 746.90 746901.00 600Tight 4 0
C 4 0 744.99 744988.00 600Tight 4 0
C 5 2 814.75 2814750.00 600Tight 4 0
R 1 0 771.92 771923.00 600Tight 4 0
R 2 1 837.04 1837041.00 600Tight 4 0
R 3 0 742.98 742976.00 600Tight 4 0
R 4 0 794.62 794619.00 600Tight 4 0
R 5 1 747.39 1747388.00 600Tight 4 0
CR 1 0 849.79 849790.00 600Tight 4 0
CR 2 2 791.90 2791900.00 600Tight 4 0
CR 3 0 768.59 768593.00 600Tight 4 0
CR 4 1 919.82 1919824.00 600Tight 4 0
CR 5 0 1012.95 1012954.00 600Tight 4 0
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Online Stochastic Algorithm Solutions

Algorithm OnlineClass Unassigned Length Obj Instance InstanceNr
NN 1 1 1413.34 2413340.00 600Tight 4
NN 2 1 1440.08 2440079.00 600Tight 4
NN 3 1 1440.08 2440079.00 600Tight 4
NN 4 1 1433.34 2433339.00 600Tight 4
NN 5 1 1490.69 2490689.00 600Tight 4
NI 1 1 840.00 1839995.00 600Tight 4
NI 2 1 849.55 1849547.00 600Tight 4
NI 3 1 849.55 1849547.00 600Tight 4
NI 4 1 835.45 1835452.00 600Tight 4
NI 5 0 749.79 749789.00 600Tight 4
LO 1 3 754.95 3754948.00 600Tight 4
LO 2 3 765.70 3765696.00 600Tight 4
LO 3 3 765.70 3765696.00 600Tight 4
LO 4 2 716.31 2716310.00 600Tight 4
LO 5 5 808.00 5808004.00 600Tight 4

126



B Race Output

B.1 Impact Parameter Tuning - R Output

Racing methods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race name.....................Tuning of Impact Parameters on
class-solomon2

Number of candidates.........................................22
Number of available tasks....................................56
Max number of experiments..................................1200
Statistical test..................................Friedman test
Tasks seen before discarding.................................10
Initialization function......................................ok
Parallel Virtual Machine.....................................no

Markers:
x No test is performed.
- The test is performed and

some candidates are discarded.
= The test is performed but

no candidate is discarded.

+-+-----------+-----------+-----------+-----------+-----------+
| | Task| Alive| Best| Mean best| Exp so far|
+-+-----------+-----------+-----------+-----------+-----------+
|x| 1| 22| 4| 4.002e+09| 22|
|x| 2| 22| 4| 3.002e+09| 44|
|x| 3| 22| 4| 5.002e+09| 66|
|x| 4| 22| 4| 1.225e+10| 88|
|x| 5| 22| 4| 1.2e+10| 110|
|x| 6| 22| 4| 1.117e+10| 132|
|x| 7| 22| 4| 1.2e+10| 154|
|x| 8| 22| 4| 1.35e+10| 176|
|x| 9| 22| 4| 1.2e+10| 198|
|-| 10| 19| 4| 1.08e+10| 220|
|=| 11| 19| 4| 9.82e+09| 239|
|=| 12| 19| 4| 9.002e+09| 258|
|=| 13| 19| 4| 8.31e+09| 277|
|=| 14| 19| 4| 7.716e+09| 296|
|=| 15| 19| 4| 7.669e+09| 315|
|=| 16| 19| 4| 7.19e+09| 334|
|=| 17| 19| 4| 6.767e+09| 353|
|=| 18| 19| 4| 6.391e+09| 372|
|=| 19| 19| 4| 6.055e+09| 391|
|=| 20| 19| 4| 5.752e+09| 410|
|=| 21| 19| 4| 6.002e+09| 429|
|=| 22| 19| 4| 5.729e+09| 448|
|=| 23| 19| 4| 6.002e+09| 467|
|=| 24| 19| 4| 5.877e+09| 486|
|=| 25| 19| 4| 5.922e+09| 505|
|=| 26| 19| 4| 6.002e+09| 524|
|=| 27| 19| 4| 5.891e+09| 543|
|=| 28| 19| 4| 5.681e+09| 562|
|=| 29| 19| 4| 5.485e+09| 581|
|=| 30| 19| 4| 5.302e+09| 600|
|=| 31| 19| 4| 5.131e+09| 619|
|=| 32| 19| 4| 4.971e+09| 638|
|=| 33| 19| 4| 4.851e+09| 657|
|=| 34| 19| 4| 4.708e+09| 676|
|=| 35| 19| 4| 4.631e+09| 695|
|=| 36| 19| 4| 4.53e+09| 714|
|=| 37| 19| 4| 4.435e+09| 733|
|=| 38| 19| 4| 4.318e+09| 752|
|=| 39| 19| 4| 4.694e+09| 771|
|=| 40| 19| 4| 4.727e+09| 790|
|=| 41| 19| 4| 4.709e+09| 809|
|=| 42| 19| 4| 5.002e+09| 828|
|=| 43| 19| 4| 5.397e+09| 847|
|=| 44| 19| 4| 5.388e+09| 866|
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|=| 45| 19| 4| 5.513e+09| 885|
|=| 46| 19| 4| 5.763e+09| 904|
|=| 47| 19| 4| 6.045e+09| 923|
|=| 48| 19| 4| 6.065e+09| 942|
|=| 49| 19| 4| 5.961e+09| 961|
|=| 50| 19| 4| 5.862e+09| 980|
|=| 51| 19| 4| 5.747e+09| 999|
|=| 52| 19| 4| 5.829e+09| 1018|
|=| 53| 19| 4| 5.964e+09| 1037|
|=| 54| 19| 4| 5.965e+09| 1056|
|=| 55| 19| 4| 6.02e+09| 1075|
|=| 56| 19| 4| 5.948e+09| 1094|
+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: 4 mean value: 5.948e+09

Description of the selected candidate:
label command

4 1-1-8 runImpact.jar 10 10 80

$precis
[1] "\nRacing methods for the selection of the best\nCopyright (C) 2003 Mauro Birattari\nThis software comes with ABSOLUTELY NO WARRANTY\n\nRace

$results
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 30002666743 30002666743 10002124943 4002079342 4002079342 4002079342
[2,] 35002573675 35002573675 14002267462 2002031084 2002031084 2002031084
[3,] 43002223661 43002223661 34002147180 9001820688 9001820688 9001820688
[4,] 52001876951 52001876951 46001794378 34001679408 34001679408 34001679408
[5,] 26002466616 26002466616 17002207186 11002232000 11002232000 11002232000
[6,] 28002266458 28002266458 27002037508 7001872851 7001872851 7001872851
[7,] 40002179539 40002179539 29002035582 17001835444 17001835444 17001835444
[8,] 52002107617 52002107617 42001922064 24001762993 24001762993 24001762993
[9,] 5002838830 5002838830 1002506278 2490933 2490933 2490933

[10,] 8002504552 8002504552 2002456302 2147668 2147668 2147668
[11,] NA NA NA 2105298 2105298 2105298
[12,] NA NA NA 1864733 1864733 1864733
[13,] NA NA NA 2295745 2295745 2295745
[14,] NA NA NA 2334613 2334613 2334613
[15,] NA NA NA 7002054322 7002054322 7002054322
[16,] NA NA NA 1912129 1912129 1912129
[17,] NA NA NA 2506797 2506797 2506797
[18,] NA NA NA 2667283 2667283 2667283
[19,] NA NA NA 2385567 2385567 2444337
[20,] NA NA NA 1297031 1297031 1297031
[21,] NA NA NA 11001971079 11001971079 11001971079
[22,] NA NA NA 2259683 2259683 2259683
[23,] NA NA NA 12002017015 12002017015 12002017015
[24,] NA NA NA 3001088451 3001088451 3001088451
[25,] NA NA NA 7001551941 7001551941 7001551941
[26,] NA NA NA 8001706941 8001706941 8001706941
[27,] NA NA NA 3001195437 3001195437 3001195437
[28,] NA NA NA 2498030 2498030 2498030
[29,] NA NA NA 2478148 2478148 2478148
[30,] NA NA NA 2554385 2554385 2554385
[31,] NA NA NA 2345474 2345474 2345474
[32,] NA NA NA 2750943 2750943 2753417
[33,] NA NA NA 1002597886 1002597886 1002597886
[34,] NA NA NA 3077338 3077338 3077338
[35,] NA NA NA 2002755043 2002755043 2002755043
[36,] NA NA NA 1002004219 1002004219 1002004219
[37,] NA NA NA 1001967221 1001967221 1001965344
[38,] NA NA NA 1797627 1797627 1797627
[39,] NA NA NA 19001612333 19001612333 19001612333
[40,] NA NA NA 6001853616 6001853616 6001853616
[41,] NA NA NA 4001882318 4001882318 4001882318
[42,] NA NA NA 17001594059 17001594059 17001594059
[43,] NA NA NA 22001478282 22001478282 22001478282
[44,] NA NA NA 5001772265 5001772265 5001772265
[45,] NA NA NA 11001679067 11001679067 11001679067
[46,] NA NA NA 17001582342 17001582342 17001582342
[47,] NA NA NA 19001574116 19001574116 19001574116
[48,] NA NA NA 7001245393 7001245393 7001245393
[49,] NA NA NA 1002073182 1002073182 1002073182
[50,] NA NA NA 1002536319 1002536319 1002536319
[51,] NA NA NA 1978379 1978379 1978379
[52,] NA NA NA 10001774925 10001774925 10001774925
[53,] NA NA NA 13002153736 13002153736 13002153736
[54,] NA NA NA 6001878723 6001878723 6001878723
[55,] NA NA NA 9002423915 9002423915 9002423915
[56,] NA NA NA 2001923778 2001923778 2001923778

[,7] [,8] [,9] [,10] [,11] [,12]
[1,] 4002079342 4002079342 4002079342 4002079342 4002079342 4002079342
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[2,] 2002031084 2002031084 2002031084 2002031084 2002031084 2002031084
[3,] 9001820688 9001820688 9001820688 9001820688 9001820688 9001820688
[4,] 34001679408 34001679408 34001679408 34001679408 34001679408 34001679408
[5,] 11002232000 11002232000 11002232000 11002232000 11002232000 11002232000
[6,] 7001872851 7001872851 7001872851 7001872851 7001872851 7001872851
[7,] 17001835444 17001835444 17001835444 17001835444 17001835444 17001835444
[8,] 24001762993 24001762993 24001762993 24001762993 24001762993 24001762993
[9,] 2490933 2490933 2490933 2490933 2490933 2490933

[10,] 2147668 2147668 2147668 2147668 2147668 2147668
[11,] 2105298 2105298 2105298 2105298 2105298 2105298
[12,] 1864733 1864733 1864733 1864733 1864733 1864733
[13,] 2295745 2295745 2295745 2295745 2295745 2295745
[14,] 2334613 2334613 2334613 2334613 2334613 2334613
[15,] 7002054322 7002054322 7002054322 7002054322 7002054322 7002054322
[16,] 1912129 1912129 1912129 1912129 1912129 1912129
[17,] 2506797 2506797 2506797 2506797 2506797 2506797
[18,] 2667283 2667283 2667283 2667283 2667283 2667283
[19,] 2385567 2385567 2444337 2385567 2385567 2385567
[20,] 1297031 1297031 1297031 1297031 1297031 1297031
[21,] 11001971079 11001971079 11001971079 11001971079 11001971079 11001971079
[22,] 2259683 2259683 2259683 2259683 2259683 2259683
[23,] 12002017015 12002017015 12002017015 12002017015 12002017015 12002017015
[24,] 3001088451 3001088451 3001088451 3001088451 3001088451 3001088451
[25,] 7001551941 7001551941 7001551941 7001551941 7001551941 7001551941
[26,] 8001706941 8001706941 8001706941 8001706941 8001706941 8001706941
[27,] 3001195437 3001195437 3001195437 3001195437 3001195437 3001195437
[28,] 2498030 2498030 2498030 2498030 2498030 2498030
[29,] 2478148 2478148 2478148 2478148 2478148 2478148
[30,] 2554385 2554385 2554385 2554385 2554385 2554385
[31,] 2345474 2345474 2345474 2345474 2345474 2345474
[32,] 2750943 2750943 2750943 2750943 2750943 2750943
[33,] 1002597886 1002597886 1002597886 1002597886 1002597886 1002597886
[34,] 3077338 3077338 3077338 3077338 3077338 3077338
[35,] 2002755043 2002755043 2002755043 2002755043 2002755043 2002755043
[36,] 1002004219 1002004219 1002004219 1002004219 1002004219 1002004219
[37,] 1001967221 1001967221 1001967221 1001967221 1001967221 1001967221
[38,] 1797627 1797627 1797627 1797627 1797627 1797627
[39,] 19001612333 19001612333 19001612333 19001612333 19001612333 19001612333
[40,] 6001853616 6001853616 6001853616 6001853616 6001853616 6001853616
[41,] 4001882318 4001882318 4001882318 4001882318 4001882318 4001882318
[42,] 17001594059 17001594059 17001594059 17001594059 17001594059 17001594059
[43,] 22001478282 22001478282 22001478282 22001478282 22001478282 22001478282
[44,] 5001772265 5001772265 5001772265 5001772265 5001772265 5001772265
[45,] 11001679067 11001679067 11001679067 11001679067 11001679067 11001679067
[46,] 17001582342 17001582342 17001582342 17001582342 17001582342 17001582342
[47,] 19001574116 19001574116 19001574116 19001574116 19001574116 19001574116
[48,] 7001245393 7001245393 7001245393 7001245393 7001245393 7001245393
[49,] 1002073182 1002073182 1002073182 1002073182 1002073182 1002073182
[50,] 1002536319 1002536319 1002536319 1002536319 1002536319 1002536319
[51,] 1978379 1978379 1978379 1978379 1978379 1978379
[52,] 10001774925 10001774925 10001774925 10001774925 10001774925 10001774925
[53,] 13002153736 13002153736 13002153736 13002153736 13002153736 13002153736
[54,] 6001878723 6001878723 6001878723 6001878723 6001878723 6001878723
[55,] 9002423915 9002423915 9002423915 9002423915 9002423915 9002423915
[56,] 2001923778 2001923778 2001923778 2001923778 2001923778 2001923778

[,13] [,14] [,15] [,16] [,17] [,18]
[1,] 4002079342 4002079342 4002079342 4002079342 4002079342 4002079342
[2,] 2002031084 2002031084 2002031084 2002031084 2002031084 2002031084
[3,] 9001820688 9001820688 9001820688 9001820688 9001820688 9001820688
[4,] 34001679408 34001679408 34001679408 34001679408 34001679408 34001679408
[5,] 11002232000 11002232000 11002232000 11002232000 11002232000 11002232000
[6,] 7001872851 7001872851 7001872851 7001872851 7001872851 7001872851
[7,] 17001835444 17001835444 17001835444 17001835444 17001835444 17001835444
[8,] 24001762993 24001762993 24001762993 24001762993 24001762993 24001762993
[9,] 2490933 2490933 2490933 2490933 2490933 2490933

[10,] 2147668 2147668 2147668 2147668 2147668 2147668
[11,] 2105298 2105298 2105298 2105298 2105298 2105298
[12,] 1864733 1864733 1864733 1864733 1864733 1864733
[13,] 2295745 2295745 2295745 2295745 2295745 2295745
[14,] 2334613 2334613 2334613 2334613 2334613 2334613
[15,] 7002054322 7002054322 7002054322 7002054322 7002054322 7002054322
[16,] 1912129 1912129 1912129 1912129 1912129 1912129
[17,] 2506797 2506797 2506797 2506797 2506797 2506797
[18,] 2667283 2667283 2667283 2667283 2667283 2667283
[19,] 2444337 2444337 2385567 2385567 2444337 2444337
[20,] 1297031 1297031 1297031 1297031 1297031 1297031
[21,] 11001971079 11001971079 11001971079 11001971079 11001971079 11001971079
[22,] 2259683 2259683 2259683 2259683 2259683 2259683
[23,] 12002017015 12002017015 12002017015 12002017015 12002017015 12002017015
[24,] 3001088451 3001088451 3001088451 3001088451 3001088451 3001088451
[25,] 7001551941 7001551941 7001551941 7001551941 7001551941 7001551941
[26,] 8001706941 8001706941 8001706941 8001706941 8001706941 8001706941
[27,] 3001195437 3001195437 3001195437 3001195437 3001195437 3001195437
[28,] 2498030 2498030 2498030 2498030 2498030 2498030
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[29,] 2478148 2478148 2478148 2478148 2478148 2478148
[30,] 2554385 2554385 2554385 2554385 2554385 2554385
[31,] 2345474 2345474 2345474 2345474 2345474 2345474
[32,] 2750943 2750943 2750943 2750943 2750943 2750943
[33,] 1002597886 1002597886 1002597886 1002597886 1002597886 1002597886
[34,] 3077338 3077338 3077338 3077338 3077338 3077338
[35,] 2002755043 2002755043 2002755043 2002755043 2002755043 2002755043
[36,] 1002004219 1002004219 1002004219 1002004219 1002004219 1002004219
[37,] 1001967221 1001967221 1001967221 1001967221 1001967221 1001967221
[38,] 1797627 1797627 1797627 1797627 1797627 1797627
[39,] 19001612333 19001612333 19001612333 19001612333 19001612333 19001612333
[40,] 6001853616 6001853616 6001853616 6001853616 6001853616 6001853616
[41,] 4001882318 4001882318 4001882318 4001882318 4001882318 4001882318
[42,] 17001594059 17001594059 17001594059 17001594059 17001594059 17001594059
[43,] 22001478282 22001478282 22001478282 22001478282 22001478282 22001478282
[44,] 5001772265 5001772265 5001772265 5001772265 5001772265 5001772265
[45,] 11001679067 11001679067 11001679067 11001679067 11001679067 11001679067
[46,] 17001582342 17001582342 17001582342 17001582342 17001582342 17001582342
[47,] 19001574116 19001574116 19001574116 19001574116 19001574116 19001574116
[48,] 7001245393 7001245393 7001245393 7001245393 7001245393 7001245393
[49,] 1002073182 1002073182 1002073182 1002073182 1002073182 1002073182
[50,] 1002536319 1002536319 1002536319 1002536319 1002536319 1002536319
[51,] 1978379 1978379 1978379 1978379 1978379 1978379
[52,] 10001774925 10001774925 10001774925 10001774925 10001774925 10001774925
[53,] 13002153736 13002153736 13002153736 13002153736 13002153736 13002153736
[54,] 6001878723 6001878723 6001878723 6001878723 6001878723 6001878723
[55,] 9002423915 9002423915 9002423915 9002423915 9002423915 9002423915
[56,] 2001923778 2001923778 2001923778 2001923778 2001923778 2001923778

[,19] [,20] [,21] [,22]
[1,] 4002079342 4002079342 4002079342 4002079342
[2,] 2002031084 2002031084 2002031084 2002031084
[3,] 9001820688 9001820688 9001820688 9001820688
[4,] 34001679408 34001679408 34001679408 34001679408
[5,] 11002232000 11002232000 11002232000 11002232000
[6,] 7001872851 7001872851 7001872851 7001872851
[7,] 17001835444 17001835444 17001835444 17001835444
[8,] 24001762993 24001762993 24001762993 24001762993
[9,] 2490933 2490933 2490933 2490933

[10,] 2147668 2147668 2147668 2147668
[11,] 2105298 2105298 2105298 2105298
[12,] 1864733 1864733 1864733 1864733
[13,] 2295745 2295745 2295745 2295745
[14,] 2334613 2334613 2334613 2334613
[15,] 7002054322 7002054322 7002054322 7002054322
[16,] 1912129 1912129 1912129 1912129
[17,] 2506797 2506797 2506797 2506797
[18,] 2667283 2667283 2667283 2667283
[19,] 2444337 2444337 2385567 2385567
[20,] 1297031 1297031 1297031 1297031
[21,] 11001971079 11001971079 11001971079 11001971079
[22,] 2259683 2259683 2259683 2259683
[23,] 12002017015 12002017015 12002017015 12002017015
[24,] 3001088451 3001088451 3001088451 3001088451
[25,] 7001551941 7001551941 7001551941 7001551941
[26,] 8001706941 8001706941 8001706941 8001706941
[27,] 3001195437 3001195437 3001195437 3001195437
[28,] 2498030 2498030 2498030 2498030
[29,] 2478148 2478148 2478148 2478148
[30,] 2554385 2554385 2554385 2554385
[31,] 2345474 2345474 2345474 2345474
[32,] 2750943 2750943 2750943 2750943
[33,] 1002597886 1002597886 1002597886 1002597886
[34,] 3077338 3077338 3077338 3077338
[35,] 2002755043 2002755043 2002755043 2002755043
[36,] 1002004219 1002004219 1002004219 1002004219
[37,] 1001967221 1001967221 1001967221 1001967221
[38,] 1797627 1797627 1797627 1797627
[39,] 19001612333 19001612333 19001612333 19001612333
[40,] 6001853616 6001853616 6001853616 6001853616
[41,] 4001882318 4001882318 4001882318 4001882318
[42,] 17001594059 17001594059 17001594059 17001594059
[43,] 22001478282 22001478282 22001478282 22001478282
[44,] 5001772265 5001772265 5001772265 5001772265
[45,] 11001679067 11001679067 11001679067 11001679067
[46,] 17001582342 17001582342 17001582342 17001582342
[47,] 19001574116 19001574116 19001574116 19001574116
[48,] 7001245393 7001245393 7001245393 7001245393
[49,] 1002073182 1002073182 1002073182 1002073182
[50,] 1002536319 1002536319 1002536319 1002536319
[51,] 1978379 1978379 1978379 1978379
[52,] 10001774925 10001774925 10001774925 10001774925
[53,] 13002153736 13002153736 13002153736 13002153736
[54,] 6001878723 6001878723 6001878723 6001878723
[55,] 9002423915 9002423915 9002423915 9002423915
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[56,] 2001923778 2001923778 2001923778 2001923778

$no.candidates
[1] 22

$no.tasks
[1] 56

$no.subtasks
[1] 1

$no.experiments
[1] 1094

$no.alive
[1] 19

$alive
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$best
[1] 4

$mean.best
[1] 5948446599

$timestamp.start
[1] "Fri Apr 24 08:50:03 2009"

$timestamp.end
[1] "Fri Apr 24 08:56:33 2009"

$description.best
label command

4 1-1-8 runImpact.jar 10 10 80

$alive.inTime
[1] 22

B.2 ILS Permutation Tuning - R Output
Racing methods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race name........................Tuning of ILS Parameters on
class-solomon2

Number of candidates.........................................13
Number of available tasks....................................56
Max number of experiments...................................728
Statistical test..................................Friedman test
Tasks seen before discarding..................................6
Initialization function......................................ok
Parallel Virtual Machine.....................................no

Markers:
x No test is performed.
- The test is performed and

some candidates are discarded.
= The test is performed but

no candidate is discarded.

+-+-----------+-----------+-----------+-----------+-----------+
| | Task| Alive| Best| Mean best| Exp so far|
+-+-----------+-----------+-----------+-----------+-----------+
|x| 1| 13| 11| 1.747e+06| 13|
|x| 2| 13| 8| 5.162e+07| 26|
|x| 3| 13| 9| 6.819e+07| 39|
|x| 4| 13| 9| 1.264e+08| 52|
|x| 5| 13| 6| 1.415e+08| 65|
|=| 6| 13| 6| 1.181e+08| 78|
|=| 7| 13| 6| 1.015e+08| 91|
|-| 8| 7| 6| 1.015e+08| 104|
|=| 9| 7| 9| 9.029e+07| 111|
|=| 10| 7| 9| 8.138e+07| 118|
|=| 11| 7| 9| 7.407e+07| 125|
|=| 12| 7| 9| 6.797e+07| 132|
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|=| 13| 7| 9| 6.282e+07| 139|
|=| 14| 7| 9| 5.841e+07| 146|
|=| 15| 7| 9| 5.458e+07| 153|
|=| 16| 7| 9| 5.122e+07| 160|
|-| 17| 3| 9| 4.826e+07| 167|
|-| 18| 2| 9| 4.563e+07| 170|
|=| 19| 2| 9| 4.328e+07| 172|
|=| 20| 2| 9| 4.115e+07| 174|
|=| 21| 2| 9| 4.4e+07| 176|
|=| 22| 2| 9| 4.203e+07| 178|
|=| 23| 2| 9| 4.46e+07| 180|
|=| 24| 2| 9| 4.694e+07| 182|
|=| 25| 2| 9| 4.509e+07| 184|
|=| 26| 2| 9| 4.338e+07| 186|
|=| 27| 2| 9| 4.18e+07| 188|
|=| 28| 2| 9| 4.036e+07| 190|
|=| 29| 2| 9| 3.902e+07| 192|
|=| 30| 2| 9| 3.775e+07| 194|
|=| 31| 2| 9| 3.657e+07| 196|
|=| 32| 2| 9| 3.547e+07| 198|
|=| 33| 2| 9| 3.443e+07| 200|
|=| 34| 2| 9| 3.345e+07| 202|
|=| 35| 2| 9| 3.252e+07| 204|
|=| 36| 2| 9| 3.167e+07| 206|
|=| 37| 2| 9| 3.085e+07| 208|
|=| 38| 2| 9| 3.008e+07| 210|
|=| 39| 2| 9| 2.933e+07| 212|
|=| 40| 2| 9| 2.864e+07| 214|
|=| 41| 2| 9| 3.041e+07| 216|
|=| 42| 2| 9| 3.209e+07| 218|
|=| 43| 2| 9| 3.369e+07| 220|
|=| 44| 2| 9| 3.523e+07| 222|
|=| 45| 2| 9| 3.447e+07| 224|
|=| 46| 2| 9| 4.027e+07| 226|
|=| 47| 2| 9| 3.943e+07| 228|
|=| 48| 2| 9| 4.488e+07| 230|
|=| 49| 2| 9| 4.603e+07| 232|
|=| 50| 2| 9| 4.513e+07| 234|
|=| 51| 2| 9| 4.426e+07| 236|
|=| 52| 2| 9| 4.343e+07| 238|
|=| 53| 2| 9| 4.452e+07| 240|
|=| 54| 2| 9| 4.371e+07| 242|
|=| 55| 2| 9| 4.293e+07| 244|
|=| 56| 2| 9| 4.219e+07| 246|
+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: 9 mean value: 4.219e+07

Description of the selected candidate:
label command

9 R25-E0 runILSRace.jar 25 -1

$precis
[1] "\nRacing methods for the selection of the best\nCopyright (C) 2003 Mauro Birattari\nThis software comes with ABSOLUTELY NO WARRANTY\n\nRace

$results
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 101693139 101838462 201691201 101717873 201696242 101707540 101681751
[2,] 1685588 1667377 1571879 1746904 1629472 1601070 1666714
[3,] 101400601 101351287 101355637 101313931 101363605 101303096 101276698
[4,] 501319678 301280322 301316323 701319824 401177083 401180132 301173274
[5,] 101676552 101820849 201655302 101645680 201598169 101640097 201672492
[6,] 1484003 1488833 1482303 1493530 1460930 1452241 1435121
[7,] 1295539 1388317 101417296 1326622 101330480 1406890 101327410
[8,] 201347590 201278857 1301481 201316602 201272816 101345220 1303807
[9,] NA 1281578 1294687 NA NA 1331685 1312914

[10,] NA 1361338 1317402 NA NA 1269668 1226757
[11,] NA 1004633 1033531 NA NA 1062475 1010167
[12,] NA 911982 892521 NA NA 813681 874509
[13,] NA 1067069 1071664 NA NA 1080729 1080065
[14,] NA 1130829 1027118 NA NA 1033654 1086017
[15,] NA 937216 947046 NA NA 960596 936071
[16,] NA 824941 853874 NA NA 794912 806982
[17,] NA 1036531 996755 NA NA 973779 961861
[18,] NA NA NA NA NA NA 1052212
[19,] NA NA NA NA NA NA NA
[20,] NA NA NA NA NA NA NA
[21,] NA NA NA NA NA NA NA
[22,] NA NA NA NA NA NA NA
[23,] NA NA NA NA NA NA NA
[24,] NA NA NA NA NA NA NA
[25,] NA NA NA NA NA NA NA
[26,] NA NA NA NA NA NA NA
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[27,] NA NA NA NA NA NA NA
[28,] NA NA NA NA NA NA NA
[29,] NA NA NA NA NA NA NA
[30,] NA NA NA NA NA NA NA
[31,] NA NA NA NA NA NA NA
[32,] NA NA NA NA NA NA NA
[33,] NA NA NA NA NA NA NA
[34,] NA NA NA NA NA NA NA
[35,] NA NA NA NA NA NA NA
[36,] NA NA NA NA NA NA NA
[37,] NA NA NA NA NA NA NA
[38,] NA NA NA NA NA NA NA
[39,] NA NA NA NA NA NA NA
[40,] NA NA NA NA NA NA NA
[41,] NA NA NA NA NA NA NA
[42,] NA NA NA NA NA NA NA
[43,] NA NA NA NA NA NA NA
[44,] NA NA NA NA NA NA NA
[45,] NA NA NA NA NA NA NA
[46,] NA NA NA NA NA NA NA
[47,] NA NA NA NA NA NA NA
[48,] NA NA NA NA NA NA NA
[49,] NA NA NA NA NA NA NA
[50,] NA NA NA NA NA NA NA
[51,] NA NA NA NA NA NA NA
[52,] NA NA NA NA NA NA NA
[53,] NA NA NA NA NA NA NA
[54,] NA NA NA NA NA NA NA
[55,] NA NA NA NA NA NA NA
[56,] NA NA NA NA NA NA NA

[,8] [,9] [,10] [,11] [,12] [,13]
[1,] 101676031 101663403 101762558 1747145 1825355 1824957
[2,] 1559973 1598734 1634375 1725025 1731383 1860763
[3,] 101317876 101308897 101369086 101420453 101435126 101441879
[4,] 601122435 301209203 701273506 501266652 501302212 501291747
[5,] 101690869 201514987 101746247 101773418 101778023 201802248
[6,] 1459034 1466745 1483049 1471734 1499565 1488446
[7,] 101344130 101303440 1429876 1405121 101395049 201411637
[8,] 101288559 1271688 201319265 101378569 101397981 201325029
[9,] 1248128 1294075 NA 1329786 NA NA

[10,] 1186819 1164008 NA 1300383 NA NA
[11,] 1098172 981758 NA 1058403 NA NA
[12,] 834931 849296 NA 934222 NA NA
[13,] 1072057 1072271 NA 1067803 NA NA
[14,] 969547 1054152 NA 1082875 NA NA
[15,] 949024 922958 NA 939688 NA NA
[16,] 797525 785240 NA 857446 NA NA
[17,] 971011 961404 NA 1041948 NA NA
[18,] 1028021 989458 NA NA NA NA
[19,] 881885 864255 NA NA NA NA
[20,] 776681 715073 NA NA NA NA
[21,] 1023009 100998624 NA NA NA NA
[22,] 742710 739598 NA NA NA NA
[23,] 957395 100959860 NA NA NA NA
[24,] 776677 100897859 NA NA NA NA
[25,] 715221 686408 NA NA NA NA
[26,] 588287 693175 NA NA NA NA
[27,] 783246 721729 NA NA NA NA
[28,] 1539244 1506010 NA NA NA NA
[29,] 1372458 1343478 NA NA NA NA
[30,] 1217679 1092757 NA NA NA NA
[31,] 959068 1057721 NA NA NA NA
[32,] 1478727 1455224 NA NA NA NA
[33,] 1218698 1204990 NA NA NA NA
[34,] 1124772 1083218 NA NA NA NA
[35,] 899267 910576 NA NA NA NA
[36,] 1710095 1672908 NA NA NA NA
[37,] 1535131 1532458 NA NA NA NA
[38,] 1309782 1330271 NA NA NA NA
[39,] 1082780 1048158 NA NA NA NA
[40,] 1505593 1516042 NA NA NA NA
[41,] 101298337 101302552 NA NA NA NA
[42,] 201068184 101082355 NA NA NA NA
[43,] 1046700 101045036 NA NA NA NA
[44,] 101306397 101211575 NA NA NA NA
[45,] 101154904 1175018 NA NA NA NA
[46,] 201176216 301105520 NA NA NA NA
[47,] 1024789 1019795 NA NA NA NA
[48,] 401063940 300975790 NA NA NA NA
[49,] 1074125 100936716 NA NA NA NA
[50,] 1020169 1133006 NA NA NA NA
[51,] 1076236 908872 NA NA NA NA
[52,] 865171 957022 NA NA NA NA
[53,] 100899576 101133591 NA NA NA NA
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[54,] 1096625 987735 NA NA NA NA
[55,] 990179 930371 NA NA NA NA
[56,] 881755 1044550 NA NA NA NA

$no.candidates
[1] 13

$no.tasks
[1] 56

$no.subtasks
[1] 1

$no.experiments
[1] 246

$no.alive
[1] 2

$alive
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

[13] FALSE

$best
[1] 9

$mean.best
[1] 42185565

$timestamp.start
[1] "Mon Apr 27 21:44:26 2009"

$timestamp.end
[1] "Mon Apr 27 22:28:41 2009"

$description.best
label command

9 R25-E0 runILSRace.jar 25 -1

$alive.inTime
[1] 13

B.3 LO Pool Size Tuning - R Output
R version 2.6.2 (2008-02-08)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

> library(race)
> source("race.STC.R")
> launch()

Racing methods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race name..........................Tuning of LO pool size on
class-solomon2

Number of candidates..........................................3
Number of available tasks....................................20
Max number of experiments....................................60
Statistical test..................................Friedman test
Tasks seen before discarding..................................6
Initialization function......................................ok
Parallel Virtual Machine.....................................no
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Markers:
x No test is performed.
- The test is performed and

some candidates are discarded.
= The test is performed but

no candidate is discarded.

+-+-----------+-----------+-----------+-----------+-----------+
| | Task| Alive| Best| Mean best| Exp so far|
+-+-----------+-----------+-----------+-----------+-----------+
|x| 1| 3| 1| 9.002e+09| 3|
|x| 2| 3| 1| 1.4e+10| 6|
|x| 3| 3| 3| 1.767e+10| 9|
|x| 4| 3| 2| 2.25e+10| 12|
|x| 5| 3| 2| 2.2e+10| 15|
|=| 6| 3| 2| 2.117e+10| 18|
|=| 7| 3| 2| 2.557e+10| 21|
|=| 8| 3| 2| 3.2e+10| 24|
|=| 9| 3| 2| 2.956e+10| 27|
|=| 10| 3| 2| 2.76e+10| 30|
|=| 11| 3| 2| 2.655e+10| 33|
|=| 12| 3| 2| 2.567e+10| 36|
|=| 13| 3| 2| 2.477e+10| 39|
|=| 14| 3| 3| 2.193e+10| 42|
|=| 15| 3| 3| 2.14e+10| 45|
|=| 16| 3| 3| 2.169e+10| 48|
|=| 17| 3| 2| 2.23e+10| 51|
|=| 18| 3| 2| 2.178e+10| 54|
|=| 19| 3| 2| 2.253e+10| 57|
|=| 20| 3| 2| 2.155e+10| 60|
+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: 2 mean value: 2.155e+10

Description of the selected candidate:
label command

2 size5 runRacePoolsize.jar 5

$precis
[1] "\nRacing methods for the selection of the best\nCopyright (C) 2003 Mauro Birattari\nThis software comes with ABSOLUTELY NO WARRANTY\n\nRace name..........................Tuning

$results
[,1] [,2] [,3]

[1,] 9001821587 13001892503 11001845705
[2,] 19001545162 15001513106 18001479017
[3,] 26001296132 26001229844 24001249406
[4,] 41000928166 36001024548 43000827531
[5,] 20001596653 20001576996 24001592205
[6,] 25001410238 17001450493 18001321364
[7,] 32000974927 52000813715 58000774086
[8,] 45000906853 77000414322 40001028753
[9,] 12001573456 10001560985 12001533312

[10,] 16001241266 10001428129 10001346343
[11,] 12001111605 16001196459 11001188390
[12,] 16000957035 16001069085 17001013617
[13,] 13001443954 14001389671 13001352503
[14,] 18001183610 9001371867 8001182919
[15,] 19000999637 18000984559 14000997101
[16,] 17000926348 18000992283 26000919084
[17,] 13001488634 12001249063 19001210413
[18,] 25001059907 13001398950 29001027997
[19,] 25000954086 36000924927 8001170930
[20,] 3000647998 3000701566 4000733889

$no.candidates
[1] 3

$no.tasks
[1] 20

$no.subtasks
[1] 1

$no.experiments
[1] 60

$no.alive
[1] 3

$alive
[1] TRUE TRUE TRUE
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$best
[1] 2

$mean.best
[1] 21551209154

$timestamp.start
[1] "Tue Apr 28 09:46:08 2009"

$timestamp.end
[1] "Tue Apr 28 20:56:15 2009"

$description.best
label command

2 size5 runRacePoolsize.jar 5

$alive.inTime
[1] 3
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