Online Stochastic Vehicle Routing

by

Kasper Galschigt Markus

Master’s Thesis
Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark
May 2009

Supervisor: Professor, Ph.D.,Dr. Scient., Jgrgen Bang-Jensen

Abstract

This thesis deals with the Dynamic Vehicle Routing Problem (DVRP) for whicthsistic in-
formation is available. DVRP is interesting in that it enables the modeling of maautigal
applications, that the offline VRP is not able to handle. Traditionally, the D\éRBIved in one
of two ways: when customers become known throughout the run, oldioaline algorithms
are used, in which the route is extended as more customers becomes avdiladiieatively,
when all customers are available but with uncertainties in their propertiehastic optimiza-
tion is used, which build the routing plan a priori, and then modifies it whenggsim customer
properties occur.

This thesis is based on Van Hentenryck and Bent [2006], which preseew approach to
solving the DVRP by the use of stochastic information to guide the algorithm. Haeigito
use this extra knowledge to make more enlightened decisions than oblivithus algorithms
and furthermore handle more dynamic instances than stochastic optimizatide i® aolve
efficiently.

The algorithms of Van Hentenryck and Bent [2006] are implemented andidedeto ef-
ficiently handle continuous positionings of customers by means of discretizattithe map.
Furthermore, the relatively new offline algorithm ABHC is implemented as gpsotedure for
the algorithms. These algorithms are compared to three oblivious online afgsrith well as
solutions found by an offline algorithm (ABHC). The results found areamtirely consistent
with those of Van Hentenryck and Bent [2006].

In most cases, the use of stochastic knowledge seems to help the algoritthinstfar solu-
tions than using oblivious online algorithms. Furthermore, the extension afghathms seems
to improve the efficiency of the algorithms, but further testing is needed ftiireothis.

Resune

Dette speciale omhandler dynamisk ruteplanlaegning, hvor stokastisk infonmoatiproblemet
er tilgeengeligt. Dette er interessant, fordi det tillader modellering af mangégka applika-
tioner som normal offline ruteplanleenging ikke er i stand tilatdtere.

Traditionelt lgses dynamisk ruteplanleegniriggn af to nader, alt efter karakteren af dy-
namik. Hvis det kun er en delmaengde af kunderne, der kendes franstédirtiagen, bruges
klassiske (uvidende) online algoritmer, der laver en ruteplandogdsider den i takt med, at
flere kunder bliver kendte. Hvis alle kunder derimod kendes, men meHeubiéder om deres
egenskaber &som tidsvinduer), bruges stokastiske optimering, hvori en faerdiglantéaves a
priori, og s tilpasses de eendringern@r mle forekommer.

Dette speciale er basereit pan Hentenryck and Bent [2006], der praesenterer en ny tilgang til
lgse dynamiske ruteplanlsegningsproblemer. Dette ggres ved at brugmkiastiske viden, der
er tilgaengelig om problemet til at guide planleegningen af ruteplanen. Tamkandenne ekstra
viden kan bruges til at tage mere oplyste, og dermed bedre, valg enddiandg online algo-
ritmer. Desuden er algoritmerne i stand til @nlltere mere dynamiske instanser end stokastisk
optimering er i stand til effektivt atdndtere.

Algoritmerne fra Van Hentenryck and Bent [2006] er implementeret odgdedvil effektivt
at kunne Rndtere kontinuerte placeringer af kunder. Dette er gjort ved en tisdiiag af ko-
rtet. Desuden er den relativt nye offline algoritme ABHC implementeret sosulesprocedure
til algoritmerne. De implementerede algoritmer bliver sammenlignet med tre uvidetide
algoritmer samt offline lgsninger fundet af ABHC. Resultaterne fundettedpeciale stemmer
ikke fuldsteendigt overens med resultaterne fra Van Hentenryck and Z06].

| de fleste tilfeelde virker det til, at brugen af stokastisk viden hjeelper algarintl at
finde bedre lgsninger end de uvidende online algoritmer. Desudentagd tk at den imple-
menterede udvidelse med diskretisering af kortet hjeelper til at ggre algarégmesre effektive,
men videre tests er ngdvendige for at bekraefte det.

Acknowledgements:

Supervising:
Professor Jargen Bang-Jensen
Random Good Advices:
M.Sc., Ph.D. Student, Steffen Elberg Godskesen

Proof Reading:
M.Sc. Anders Porsbo
M.Sc. Kristian Kirknaes Faerk
B.Sc. Mette Wod

An Interesting Basis for a Master’s Thesis:
Professor Pascal Van Hentenryck
Ph.D. Russell Bent

Vi

Contents

1 Introduction 1
1.1 Motivation e 2
1.2 AimofThesis 2
2 Model 5
2.1 The Basic Vehicle Routing Problem (VRP) 5
2.2 TheCapacitated VRP 7
23 VRPwithTimeWindows 7
2.4 Objectives 8
25 Hardness e 9
3 The Dynamic Vehicle Routing Problem 11
3.1 SwitchingtoaDynamicSetting 12
3.2 Defining Slack: Earliest Departur® @nd Latest Arrival£) 12
3.3 Fixating Served Customers 13
3.4 Other Useful Definitions and Functions 4 1
4 Online Stochastic Algorithms 17
4.1 Algorithm Overview 17
4.2 Generic Online Stochastic Routing Algorithm 18
4.3 Choosing Requests by Consensus, chooseRe@uest-. 20
4.3.1 Algorithm Outline and Explanation 20
4.4 Choosing Requests by Regret, chooseRedRest-. 22
4.4.1 Algorithm Outline and Explanation 22
4.5 Two Alternative Strategies: Waiting and Relocation 4 2
45.1 TheWaitingStrategy 24
45.2 TheRelocationStrategy 24
4.6 Allowing Arbitrary Locationsand Samples 26
4.6.1 DiscretizationoftheMap. 26
4.7 PruningofSampledPlans. 27
4.8 Materializationof Customers L o 29
5 Instances 33
5.1 SolomonBenchmarks 33
5.2 Instance Template 34
5.3 Generated Benchmarks o 36
54 OnlinelInstances. e e 38

Vi

Contents

6 Offline Algorithms 41
6.1 Construction Heuristics e
6.1.1 Impact e
6.1.2 EjectionChains e
6.2 Neighbourhoods.
6.2.1 Relocate.
6.2.2 Exchange e
6.3 The Attribute Based Hill Climber (ABHC)
6.3.1 The ABHC Algorithm
6.3.2 ABHC for the Consensus Algorithm and Speed-up Considerations . 52
6.3.3 Improving Initial Solution Quality
6.3.4 ABHCwithFirstFit
6.3.5 Other Ways of SpeedingUp ABHC
6.4 lterated Local Search(ILS) u. 58
6.4.1 BaseAlgorithm
6.4.2 TUNING e e e
6.5 Comparing ABHCandILS

7 Oblivious Online Algorithms 69
7.1 NearestNeighbour
7.2 NearestInsertion
7.3 Local Optimization: Pool-based Online Algorithm

7.3.1 Tuningthe PoolSize

8 Using Historical Knowledge 73
8.1 HistoricalSampling
8.2 ExactSampling

9 Solving the Online Stochastic Vehicle Routing Problem 75
9.1 Testsetup e e
9.2 RegretCustomers e
9.3 Sizeof Discretization
9.4 Sampled Solutions: Quality vs. Quantity

9.41 Results e
9.4.2 FurtherExamination,
9.5 HistoricalSampling
9.6 Comparing with Offline and Online Algorithms

10 Further Extensions and Perspectives 91
10.1 More Extensive Testing of the Algorithms 1
10.2 Improvements in Implementation
10.3 Extensionsto the Algorithms
10.4 ExtensionstotheModel,

VIiI

Contents

11 Conclusion 95
A Detailed Test Output 101
Al ILSTuning: Graphs 110
A.1.1 Tuning Permutation by Neighbourhood 101
A.1.2 Tuning Permutationby Removal 104
A.1.3 Tuning Permutation by Removal and Neighbourhood 107
A.2 Detailed Resultsof Regret Tuning 011
A.3 Detailed Results of Discretization Tuning 112
A.4 Detailed Results from Historical SamplingTests 3 11
A4l 180LOOSE e 113
A4.2 180TIGHT 114
A43 B00LOOSE e 114
Ad4 600TIGHT e 114
A.5 Detailed Results of the Comparison of Algorithms 115
AS5.1 180LOOSE e 115
A5.2 180TIGHT e 118
A5.3 B600LOOSE e 120
AS5.4 600TIGHT e 123
B Race Output 127
B.1 Impact Parameter Tuning-ROQutput 712
B.2 ILS Permutation Tuning-R Output 131
B.3 LOPoolSize Tuning-ROQutput 134

Contents

List of Figures

3.1

3.2

51

5.2

6.1

6.2

6.3

6.4

6.5

6.6

lllustrations of Earliest Departure 6(c): Two examples of earliest departures

foracustomer. 12
lllustrations of Latest Arrival z(c): Two examples of latest arrivals for a cus-
tomere. e e 13

Maps of the Instance Templates and Generated Benchmark Instares: Dark-

est areas are densely populated, dark gray are of normal populatidiight

gray are sparsely populated. White areasareempty. 37
lllustration of Online Classes: The figure shows the possible intervals for a
customer to be visible in the intervat = 2. He becomes visible at some point

in time, uniformly drawn from the smallest of interval AandB.. 38

Example of Potentially Bad Neighbourhood When Using Time Windows:
Figure showing th@- opt exchange oper at or. In the right figure, the
direction of the route betweerand;j — 1 have been reversed (dotted line). This
means that customers that appeared early in the route before neightmburho
move, will now appear late and vice versa. This is potentially conflicting with

time windows. a7
Figure of the Relocate Neighbourhood MoveShows the relocate neighbour-
hood involving a single or multipleroutes. 48

Figure of the Exchange Neighbourhood MoveFigures showing the exchange
neighbourhood for a single and multiple routes. Customiexad j are ex-
changed, resulting ihbeing served betweein— 1 andj + 1 and; being served
between —landi+ 1. 49
Permutation by Neighbourhood: Graphs of the ILS algorithm run on one
Solomon instance of each class. For each instance, four settings foenumb

of moves to do were tested: 5, 15, 25 and 35. Larger versions of thagcan

be found in Appendix A.1.1. 63
Permutation by Removal: Graphs of the ILS algorithm running on one Solomon
instance of each class. For each instance, five settings for perceritags-

tomers to remove were tested: 5, 10, 15, 20 and 25%. Larger versidhe of
graphs can be found in Appendix A.1.2 Lo 64
Permutation by Removal and Neighbourhood:Graphs of the ILS algorithm
running on one Solomon instance of each class. For each instancsettings

were tested. Calling the percentage customers remowetdd the number of

moves done in the neighbourhobdthe tested settings wefe = 5,0 = 5),
(a=5,b=15),(a=10,b=5)and(a=10,b=15). 65

Xl

List of Figures

9.1 Graph of the Solution Quality of the Regret Algorithm, Run with Differ-
ent Types of Regret Calculations:These differ in which customers the regret
is calculated for. The figures show results for the four generatedhbeami
instances. Results are connected by lines to make the performance ofahe alg
rithms more clear for the reader. Figure 9.1(a) shows results for thatalgor
when the discretization size is set to 24, and Figure 9.1(b) show for tisdien

SiZe Of 35. 76

9.2 Results of Different Degrees of Discretization: The graphs show the solution
guality of the Regret and Consensus algorithms with Relocate run on the gene
ated benchmarks with different degrees of discretization. These amnrthe
four generated benchmarks. The numbers in the legend, describentibe nof
areas the map is split into. The weight of unrouted customers are set to 100078

9.3 Solution Quality for Sampled Solutions: Graphs showing the average objec-
tive value of the sampled and solved instances over the time horizon. Fgr eve
three time step, an average of the objective functions of the plans gaharate
solved during these time steps is shown. This was done to smooth the graph
out. The results are of runs of the C and CR algorithms run on the 180LOOSE
instances. Unassigned customers contribute with 1000 to the objectiv@®func 81

9.4 Quantity of Sampled Solutions: Graphs showing the number of plans available
over the course of time for instances 180. Unassigned customers ctatiitiu
1000 to the objective function.

9.5 Results on 180LOOSE Using Historical Sampling: The figure shows the
results of the Online Stochastic Algorithms using different historical sampling
on different amounts of historical data. Results of precise sampling is &so d
played forcomparison. e

9.6 Results on 180TIGHT Using Historical Sampling: The figure shows the
results of the Online Stochastic Algorithms using different historical sampling
on different amounts of historical data. Results of precise sampling is &so d
played forcomparison. e

9.7 Results on 600LOOSE Using Historical Sampling: The figure shows the
results of the Online Stochastic Algorithms using different historical sampling
on different amounts of historical data. Results of precise sampling is @so d
played for comparison.

9.8 Results on 600TIGHT Using Historical Sampling: The figure shows the
results of the Online Stochastic Algorithms using different historical sampling
on different amounts of historical data. Results of precise sampling is &so d
played for comparison.

9.9 Comparison of the Algorithms on the 180 Instances: The figure shows a
comparison of the Online Stochastic Algorithms to the oblivious online algo-
rithms and the offline value for the 180 instances.

9.10 Comparison of the Algorithms on the 600 Instances: The figure shows a
comparison of the Online Stochastic Algorithms to the oblivious online algo-
rithms and the offline value for the 600 instances.

Xl

84

84

85

85

89

List of Figures

A.1 ILS: Permutation by Neighbourhood: Large graph of tuning on R110 from

Section 6.4.2 e e
A.2 ILS: Permutation by Neighbourhood: Large graph of tuning on R204 from
Section 6.4.2 e
A.3 ILS: Permutation by Neighbourhood: Large graph of tuning on C107 from
Section 6.4.2 e
A.4 ILS: Permutation by Neighbourhood: Large graph of tuning on C203 from
section 6.4.2 L
A.5 ILS: Permutation by Neighbourhood: Large graph of tuning on RC104 from
section 6.4.2 L
A.6 ILS: Permutation by Neighbourhood: Large graph of tuning on RC206 from
section 6.4.2 L
A.7 ILS: Permutation by Removal: Large graph of tuning on R110 from section
B.4.2 . . e
A.8 ILS: Permutation by Removal: Large graph of tuning on R204 from section
B.4.2 . . e
A.9 ILS: Permutation by Removal: Large graph of tuning on C107 from section
B.4.2 . . e
A.10 ILS: Permutation by Removal: Large graph of tuning on C203 from section
B.4.2 . . e
A.11 ILS: Permutation by Removal: Large graph of tuning on RC104 from section
B.4.2 . . e
A.12 ILS: Permutation by Removal: Large graph of tuning on RC206 from section
B.4.2 . . e

A.13 ILS: Permutation by Removal and Permutation: Large graph of tuning on
R110fromsection 6.4.2.
A.14 ILS: Permutation by Removal and Permutation: Large graph of tuning on
R204 fromsection 6.4.2.
A.15 ILS: Permutation by Removal and Permutation: Large graph of tuning on
Clo7fromsection6.4.2. e
A.16 ILS: Permutation by Removal and Permutation: Large graph of tuning on
C203fromsection6.4.2.
A.17 ILS: Permutation by Removal and Permutation: Large graph of tuning on
RC104 fromsection 6.4.2
A.18 ILS: Permutation by Removal and Permutation: Large graph of tuning on
RC206 fromsection 6.4.2

Xl

List of Figures

XV

List of Tables

51

5.2

6.1

6.2

6.3

Properties of the Generated Benchmarks: Each benchmark has 50 cus-
tomers, but when sampling from template these range from 45-55. For distri-
butions within the window length, the reader is referred to the description in
section 5.2 above. For ready timda/b/c) means that- 100 percent of cus-
tomers has their ready time in first third of the time horizbandc denotes the
second and third part of the horizon. For service time and demand, theainter
given is the range of values the customers can take(&héc)part denotes dis-
tribution, whereq is the fraction that has a value in the first thibdthe second

third, etc.. e e 36
Overview of Online Classes: Classes of distributions for visibility times of
customers in the dynamicinstances. 38

Parameter Values for Testing the Impact Heuristic: For each line, except the

last two, three parameters settings are tested. For the varighlés, b.) the
settings:(a, b, ¢), (¢, a,b), (b, c,a) are used. In the second to last row, parame-

ters are equal, so this setting is tested directly. For the last row, all combigation

of the three values are tested with the givenvalues. 5 4

Comparison of Running Impact With and Without Ejection Chains: The
instances used are Solomon instances with limited vehicles. In the headings,
u indicates number of unserved customdesgthis route length. For each
instance, the left column, namedpactis the impact algorithm with no ejection

chain, wherea&j.Chain. are a run of impact followed by the ejection chain
algorithm. e 46

Comparison of the ABHC, Optimal and Heuristic Solutions Found on the
Solomon Benchmarks: The time unit is CPU-time in seconds. The results

for optimal solutions and bounds are taken from Jepsen et al. [2008jshed

April 2008. The heuristic solution values were taken from Solomon [2005]

last updated march 2005. The data was copied from the website April 20th,
2008. The rightmost columns specify percent-wise difference to optinthl an
heuristic solutions. If only bounds were available, rather than optimal sokjtio

the difference was taken to the mean of the bounds. In the results repbeed
objective is minimization of distance. 53

XV

List of Tables

6.4

6.5

6.6

6.7

9.1

9.2

Comparison of the ABHC Run With Different Quality of Starting Solu-

tions: ABHC normalis run with the Impact construction algorithm onABHC
improvedhas the Impact solution improved by a Best Fit local search with the
relocate neighbourhood. The time unit is CPU-time in seconds. For ABHC
columns, the time given is the total running time for construction heumdstit

ABHC. The columns denotagldenote the number of unserved customers. . . . 55
Comparison of the ABHC using First Fit and Best Fit: The labelu in the

column header, denotes unserved customers. The rightmost columts resgor
difference in the quality of the two settings. Results reported in bold are those

in which Best Fitperformedbest. 57
Comparison of the ABHC with Different Initial Values for attributes: Sol.

Valueis the objective value of the starting solution. The ABHC was run with this
value multiplied by 0.95, 1, 1.05 and 1.15, and also with the original setting of

oo. The starting solution was created using a ruhwpact followed by a run

of the Ejection Chain algorithm. Labelin the column header denotes unserved
CUSIOMEIS. o e 59
Results for Comparison of ABHC and ILS Given a Running Time of 10

CPU Seconds: The instances are the Solomon benchmarks, and the starting
solution of the algorithms were produced by a run of Impact followed byna ru

of EjectionChain. e 67

Results of the Online Stochastic Algorithms with Different Settings ofOf-

fline Algorithm: This table displays the results of the regular Consensus (C)
and Regret (R) algorithms and Consensus with Relocation (CR) as we#l-as R
gret with Relocation (RR) run with different settings of offline algorithmse Th
1.5, 3, 6 and 10 denotes the maximum allowed running time of the ABHC in
CPU-seconds. Obviously all the time available in a time step is used to generate
and solve instances. Consequently ABHC 1.5 is likely to be run many more
times than ABHC 10. In each cell, the left number denotes unserved customer
while the right number is the length of the routing plan. Best results are marked
with bold types. The displayed results are for the instances 180LOOSE (top

and 180TIGHT (bottom) 80
Table Displaying the 600 Instance Counterpart of Table 9.1: Best results
are marked with boldtypes. 80

XVI

List of Algorithms

O©C 0O ~NOUTA,WDNEPE

B
[N)

NRPRPRRERRRRE R
CQOWOW~NOOUAWN

insertable e 14
updateEarliestDeparture 15
updateLatestArrival 6 1
INSErt 16
FEMOVE e e e e e e e e e e 16
Generic Online Stochastic Algorithm 19
GenerateSolutions e 20
chooseRequest-. L 21
chooseRequed®-.o 23
chooseRequestR 25
Prune for Relocation 28
materialize e 30
Impact e e e 42
Basic ABHC algorithmforVRP 50
ABHC algorithm for VRP with FirstFit 56
lteratedLocalSearch 0 6
Nearest Insertion Heuristic. 70
Local Optimization 71
Improve SolutionPool 72
Historical Sampling e 74

XVII

LIST OF ALGORITHMS

XVII

1 Introduction

Routing is of increasing importance in today’s world. Whether it is browsiagnternet, send-
ing mail, transporting goods or traveling, routing is involved. While it is posdibldo this
without efficient algorithms, significant economic, logistic and time wise gaindeaachieved
using the algorithms developed for this.

In Denmark, for example, transportation represents around 15% ofah&xpenditures
[Larsen, 1999]. Furthermore, it is estimated that distribution constitute alnadfsof the total
logistics cost [De Backer et al., 1997]. Obviously, if the transportatigeeaitures of Denmark
could be lowered by planning more efficient routes, yielding shorter liraydistance or less
vehicles needed, significant economic gains could be made. Algorithmsefuketticle Routing
Problem (VRP) address the issue of finding an efficient routing plaitingsustomers, deliv-
ering goods, or something similar, while trying to minimize some objective (eg.| tlsstance).
Informally, the VRP is defined as having a pool of customers that have tistied once. A
fleet of vehicles is available, and the problem is to visit the customers while mingrsoime
objective such as time, cost, etc.

Traditionally, a distinction between off- and online problems has been madsflihe prob-
lems all data is known, whereas online problems are oblivious to what datappédar during
the execution. Naturally, there will be many problems that fall somewherethivelea these two
categories: where some or all customers are known, but with uncertdhditesre not known a
priori. In general these have been handled in two ways depending gmabkeem type. Either
with dynamic optimization, where optimization typically is performed on the knowtoousrs
and new are taken into account as they become available, or by stoclpdistization, in which
some data is stochastic and an a priori solution is made, and then, if ansedgnrevent occurs,
a recourse function modifies the solution to handle this [Bent and Van Hgnlker2004a].

In terms of the VRP there are many applications in which the problem can lsideosad
online. To name a few examples; the routing of police cars, taxi servicasibulances. Fur-
thermore, there are even applications that would traditionally be considéftie but could
be subject to sudden changes, like new customers appearing thatyurgerd service, traffic
accidents making the planned routes impossible, changes in the demansdtoofens, changed
traveling times due to heavy traffic, vehicles breaking down, etc.

During considerations on the subject of this thesis, Professor Jgrgeg-Bnsen recom-
mended the bootOnline Stochastic Combinatorial Optimizatiosy Van Hentenryck and Bent
[2006], that presented a different approach to the problem of vetdaking in a dynamic set-
ting. Their approach is based on the fact that one, in general, hassalmceome stochastic
knowledge of the problem properties through a probabilistic model of thiglggm or historical
data. Van Hentenryck and Bent uses this knowledge to guide an onlirex $olgood solutions
by anticipating future events. The approach is very interesting and hiaegigood results,
compared to oblivious online algorithms.

1.1. MOTIVATION

To grab the details of this thesis, it is expected that the reader has a léveheliedge in the
field of computer science at the level of masters degree or above.

1.1 Motivation

This thesis is based on, and motivated by the book of Van Hentenryck emic{B)06], which
amongst other is based on the work in [Bent and Van Hentenryck, 2003la,b,c,d,e; Bent
et al., 2005; Bent and Van Hentenryck, 2005; Bent and Henten2@b6]. Van Hentenryck
and Bent describe a new way to handle the dynamic vehicle routing probletikeUbrevi-
ous stochastic algorithms, their methods are able to handle very dynamic esstéma unlike
traditional dynamic algorithms, it bases its decision on other than currentevigiQuests, by
taking into account stochastic knowledge of the instance. While this meanigtiiihans need
stochastic information, it is not unreasonable to assume available in marg; sas= either
stochastic models or, more commonly, historical knowledge of a problem aestdien is avail-
able.

In the algorithms presented by Van Hentenryck and Bent [2006], theyplsathe expected
amount of customers to appear during the run — that is, based on thesttodmowledge of
the instance, they make a qualified guess on which customers will appeahatproperties
they will have. Using these sampled customers along with the ones that adyavisible at
the current time constitutes a “sampled instance”. An offline heuristic carsbe 10 solve
this, yielding a routing plan. Repeating this multiple times, a pool of solved samthioes
becomes available. When a decision has to be made on which customer toesdrwis can
be guided by the pool of plans, and in this way guiding the solution of the oplist@em by the
stochastic knowledge available.

This is a very interesting way of handling the problem which, to a degresehdan explored
previously by by Chang et al.. However, while Chang et al. achieved gesults for online
packet scheduling, their method is not well suited for the online stochastie MR to the
limited time between decisions, and the computationally demanding optimization [B&nt an
Van Hentenryck, 2004c]. As documented in Van Hentenryck and B&0], along with several
of their articles, the methods they have developed achieves good restitts tmline stochastic
VRP.

1.2 Aim of Thesis

The aim of this thesis is to implement the algorithms of Van Hentenryck and Betit6o/RP
and to extend these. Furthermore, a comparison of the results with edfeffline and online
algorithms should be made, as to be able to evaluate the value of stochastitaitidorwhen
solving the dynamic vehicle routing problem.

When Van Hentenryck and Bent sample customers, this is done in a sonsmphtied way,
in which customers can only appear in certain locations, with certain time windensand
and service times. This will be explained further in Chapter 2, 3, and 4.idritBsis, this will
be extended to allow customers to appear anywhere on the map, with arbitrarywindows,
demand and service times according to some predefined distribution. Tdebtalse this

CHAPTER 1. INTRODUCTION

efficiently with Van Hentenryck and Bents algorithms, a discretization of theimaped. The
usefulness and effectiveness of such a discretization will be examameldcompared to the
principles of Van Hentenryck and Bent.

While this will be the main goal of the thesis, the use of other offline algorithms,ttieaones
proposed by Van Hentenryck and Bent will be implemented, and their irffuen the solution
will be evaluated. Furthermore, different ways of sampling customers aididamined, like in
Van Hentenryck and Bent [2006].

Finally, a summary of the implemented results is given along with ideas and detsiss
further extensions and work.

1.2. AIM OF THESIS

2 Model

The Vehicle Routing Problem (VRP) is a well known and well studied probl@&ue to the
great amount of work that has been done on it, a great number of kpatiisas have emerged,
including capacity on vehicles, pickup and delivery of goods, time windmvsustomers,
multiple depots, a multitude of objective functions, etc.. So before examiningdbeatams
developed for the Dynamic Vehicle Routing Problem, it is necessary to fotentile exact
properties of the problem studied in this thesis as to avoid confusion on tfséepr being
examined.

This chapter will start with an introduction to the most basic VRP. In section rad22a3,
these definitions will be extended to include capacity on vehicles and time windkimaly in
section 2.4, objectives relevant to this thesis will be discussed and definddn 2.5 a short
note on the hardness of the problem is given.

Note that the VRP and the extensions defined here, are the ones needetetstand and
define the offline algorithms dealt with in Chapter 6. The extensions andtiefsrelated to
the dynamic version of this problem will be examined in Chapter 3.

2.1 The Basic Vehicle Routing Problem (VRP)

One of the most classic, well known, and well studied problem in the fielgtiinization is the
Traveling Salesman Problem (TSP). In this problem, a traveling salesman hiedt a set of
cities while minimizing the overall traveled distance.

A generalization of this problem, is the Vehicle Routing Problem (VRP), in whiethave
several traveling vehicles (or in the terminology of TSP; several saléswiem can visit the
customers. The vehicles are identical and have to start and end theirmaui@gepot. Each
customer has a location and should be visited once by one vehicle. THemrislto serve all
the customers while minimizing some objective (see section 2.4).

In the very basic version of VRP, we have a éet= | J;"_, ¢; of customers that each has to
be visited by one ofn vehicles. Each customer must be visited exactly once by one vehicle.
Therefore a customer is also called a request, and these two terms willbmiesehangeably
throughout the rest of this thesis. The vehicles depart from a deg@oid all routes must start
and end here. Knowing that each vehicle has to start and end their tdbte @epot, serving
customers in between, we can define a route as

p=<0,C1,...,Cn,0>,¢ €C,c; #¢j,Vi,j (2.1)

To denote the ordered set of customers in routeust(p) is used. Each route is served by
a vehicle, and in some contexts it is more natural to think of the route as a veFiofethe

2.1. THE BASIC VEHICLE ROUTING PROBLEM (VRP)

remainder of this thesis, the words “route”, “tour” and “vehicle” will beedgnterchangeably
depending on which word makes the understanding most clear.

We defineR as the union of the customers and depBt;= C'|Jo. Between each pair
of neighbours inR a distancei(c;, ¢j), Vri,7; € R is defined. In the context of this thesis
d(ci,cj) = d(cj,c;). The total length of a route is the sum of the distance between the cus-
tomers it containsi(p) = d(o,c1) + d(c1,¢2) + ... + d(cpn,0). Itis possible to have a cost
and/or travel time associated with each distance, but in the context of this, these values are
all considered the same.

A solution to the VRP is a set of routes serving the customers. This is callagiag@lan
(), and is defined

m
¥ =(p1, ..., pm) Wherep, # py, 0 = (1 cust(p;) (2.2)
=1
Together with (2.1), this definition ensures that no customer is served naretite. Like
in the case of routegsust() is used to denote the set of customers served by the routes of the
routing plan;

cust(y) = U cust(p;)
i=1

Similarly, the lengthi(~) of a routing plan is the sum of the length of its routes:

d(y) = cust(p;)
i=1

In a valid solution, the routing plan has to serve all the customers, whichedefined by
the constraint:
R = cust(7) (2.3)
In summary the Vehicle Routing Problem is, given aBet C'|J o of vertices (customers
and depot), and a set of edges between these:

d(?“i,’l"j) 7y, i € R

find + a routing plan minimizing the objective:

min w(7y) (2.4)

subject to the constraint of equations (2.1), (2.2) and (2.3).

There are different options for the objective These will be explained in section 2.4 on page
8.

Defined above is the most basic VRP, but as mentioned, several variatisis In the fol-
lowing sections, the ones relevant to this paper will be described.

CHAPTER 2. MODEL

2.2 The Capacitated VRP

In many cases of vehicle routing delivery of goods is involved, and to hibdethe capacitated
vehicle routing problem (CVRP) is used. As an example, a postal offiegst® deliver mail to
a set of customers, which could be done by having a fleet of vehicles gititase customers
and delivering the mail. Obviously the vehicles can only carry a certain anodumail, thus the
number of customers on a route could potentially be limited by the car not beiagoatarry
any more mail — that is, the demand of the customers on a route must notsthipaspacity
of the vehicle.

Formally, in CVRP, each customerhas a certain demangc;), and each vehicle is identical
with a capacity of). We define the demand of a route to be:

=3 a)

ci€cust(p)

that is, to be the accumulated demand of customers in ppul® model the constraint that
capacity of the vehicle imposes on a route, an extra constraint is addedgpimbiem:

q(p) <Q,Vpey (2.5)

It is possible generalize the CVRP to the regular VRP. If we hgvg) = 0,V¢; € C, the
routes are no longer restricted by the demand, and we have the VRPmrdélnemore detailed
information on the CVRP, see Toth and Vigo [2002].

2.3 VRP with Time Windows

An important and highly usable extension to the CVRP is the use of time windowBTVIR
[Toth and Vigo, 2002]. These are used when one wants to model that@ner needs to be
visited within a certain time span, or one wishes to set a deadline for whenhi@egehas to
return to the depot.

In VRPTW, each customef, has a service timg(c;), describing how long it takes to service
him. The service time of the depotjgo) = 0. To model the actual window of time in which
a customer requires service, two variablés) andi(c;) are defined’/c; € R modeling earliest
and latest start of service, respectively. A car is allowed to arrive tstomer before(c;), but
servicing the customer cannot start uafit;). The latest time that a vehicle is allowed to arrive
at a customer i§(¢;). Like customers, the depot also has a time window and!(o) assigned
to it, but these have a somewhat different meaning. The vehicles maypet d®m the depot
beforee(o), and have to be back at the depot no later tlian The time window for the depot
allows to limit the total allowed time of a tour, and hereby for example modeling aingoday
from 8-16. The total time horizon for an instance is definetl asi(o) — ¢(o).

The time windows can be handled as soft or hard constraints; calledsbstrct time win-
dows, respectively. In the soft version, it is allowed to violate the time wirsgdurt at a cost in
the evaluation function. When using strict time windows, it is forbidden tolbtieam. In this
thesis time windows will be handled as hard constraints.

2.4. OBJECTIVES

Like in the case of capacity, VRPTW can be generalized to the basic VR®isTlone by
settinge(c;) = 0 andi(c;) = oo,Ve; € R. As specified in section 2.1R is the union of all
customers and the depot. Letting all customers have infinitely long time wind@susesnthat
they will have no effect on the routing plan.

The VRP examined in this paper includes both of the extensions describegl. abloat is,
each customer has a certain demand, along with a time window in which serviloavisc

Beside extending the problem with different types of constraints, VRPages in what
the objective of the problem is. The objectives relevant to this thesis amiegd in the next
section.

2.4 Objectives

Since vehicle routing is applicable in many different scenarios, the fotctleecoptimization
varies. To model the goal of the routing plan, besides fulfilling the problensttaints, an
objective function is used. The objective is, as mentioned above, to minimizebibetive
funtion:

min w(7y)

Minimizing Route Length: A very common objective function is the minimization of the
total length of the routing plan. This is relevant when one only wants to loveetréivel cost
or travel time and no consideration for vehicle employment is done Rememlbleeidigfinition
above, the length of a routing pland§y), so the objective function is defined as:

wo(7y) = d(v) (2.6)

Minimizing Employed Vehicles then Length: A significant cost for companies for
whom vehicle routing is relevant, is the salary to drivers, purchasingraidtenance of cars,
and similar expenses. This makes limiting the number of employed cars relevait@duces
another widely used objective function. Here, the primary objective is to mirithig number
of vehicles and minimizing the length of the routing plan is the secondary olgedtietting
|v| define the number of routes in the routing plan, the objective function candoleled as
follows:

wi(y) = a-|y[+d(v) (2.7)

where the constant is the cost for employing a vehicle. Sometimes, it might be desirable
to have priority on minimizing the number of vehicles, but only to a certain pointhath the
decrease in route length makes up for the cost of adding another veHhiitecan be modeled
by settinga to a cost, allowing the desired relationship between number of vehicles agttl len
of routing plan. If the desired objective is to minimigzg disregarding length of the routing
plan, a should be set sufficiently large to render the length irrelevant in all othgescthan
the comparison of two routing plans with an equal number of employed vehiskxts More
precisely, this should be modeled as a lexicographic function which hasninmized:

CHAPTER 2. MODEL

w11(7) = (|71, d(7)) (2.8)

Minimizing Unserved Customers then Length: A less commonly used, but highly
realistic objective, is one in which we have a limited number of vehicles, andthes fis on
maximizing the number of customers served. This is used, amongst otheanbyi@htenryck
and Bent [2006]. In this case, it might not be possible to serve all thermgss. As mentioned
the objective here is to serve as many customers as possible, and saoaridiize the route
length. An example of a service in which this could be relevant is taxi-companiese have a
fixed number of vehicles available, and on some occasions it is not possiigiese all customers
due to the limited amount of vehicles (eg. new years eve). Note that whepthismobjective,
the constraint (2.3) is not used, since we want it to be legal (althougbsinathle) to not serve
some customers. Modeling this objective is very similar to objective (2.7):

wa(y) = a- (=[eust(y)]) + d(7) (2.9)

Note that we minimize the negative cardinality of the customersget(~), which equals
maximizing the number of customers in that set. Again, a constastused to specify the
priority of the served customers over route length. And, as witty) from (2.7), making: suf-
ficiently large, renders the distance irrelevant unless the number ohceit@re the same in the
two routing plans. Again, a more correct way of modeling this would be with tkiedgraphic
function:

wa () = (= |eust(y)], d(7)) (2.10)

2.5 Hardness

The VRPTW treated in this thesis can, as described above, be genetal@®RP by setting
e(c) = 0 andi(c) = oo,Ve € R. The CVRP can be generalized to VRRy{f) = 0,Ve € R,
which in turn can be generalized to the Traveling Salesman Problem wheartiteen of vehi-
cles available is only 1. The TSP has been proven NP-complete [Corm&ieind2001] which
implies by restriction that VRP, CVRP and VRPTW are NP-complete. Underdsenaption
that NP # P, this means that the problem is not solvable in polynomial time. While it has
neither been proven nor disproven tRaP # P, itis a common belief that this is the case.

It should also be emphasized that the VRPTW is a combinatorial optimizatiofeprethich
is extremely hard to solve [Van Hentenryck and Bent, 2006]. As an exartijgeSolomon
benchmarks [Solomon, 1987] are very well known and contains a maxinfiumly 100 cus-
tomers. Although considerable research in VRPTW has been made andlgaw#hms, some
very elaborate, are tested against these, optimal solutions still haveemofdasd for several of
them.

2.5. HARDNESS

10

3 The Dynamic Vehicle Routing Problem

In Chapter 2, the standard offline problem of Vehicle Routing was dextriBeing offline, it
is assumed that all information about the problem is known beforehandhibus not always
possible. Taxi services, package pickup and deliveries, policelesh&mbulances and many
more, do not know all the destinations they have to visit, let alone travel timeswyfingews or
demands. If not all the information is available from the start, the problenfirsatkas dynamic.
In a paper of Psaraftis [1988], the following definition is given: “A vééimouting problem is
static if the inputs to the problem do not change, neither during executionecltjorithm
that solves it nor during the execution of the solution; a problem is corsid#ynamic when
inputs to the problem become known to the decision maker or are updateareority with
determination of the solution.”

This simple definition simply states that some input, initially unknown, has to becoavenkn
or updated during the run, but allows a great deal of freedom in the @nodunput that has
to be dynamic. To be dynamic, it is not necessary that all the propertieRBfare dynamic.
Indeed, most studies carried out on the Dynamic Vehicle Routing Probl&RPDresearches
versions in which only a specific part of the input data is dynamic, this coallgidvel times,
service time, demand, etc..

It is relevant to examine the DVRP, because in real life, it is common thatgfatte problem
are unknown until execution of the solution. Travel times between two pantxample, will
almost always be dynamic, due to traffic, weather conditions or similar, gthibxese variations
in time might be insignificant enough, to simply ignore them and consider théepnodtatic
(offline). Accepting the fact that part of the problem is dynamic, allow®useate algorithms
that are more suitable for solving real life instances. Lots of reseaschden done in the DVRP,
as far back as 1976, when W.R. Stewart presented the Delivery Raaoking Problem with
Stochastic Demands [Stewart, 1976], and next in Cook and Russe8][1®fere the authors
examined a stochastic VRPTW.

Realistically, if the exact inputs of the VRP are unknown, it is common to hawes3dea
of their distribution. Taking the example of travel times, it might not be possiblentovkhe
exact times it takes to travel between two points, but it would be often be #ethat one
knows what times a day the traffic is heavy or scarce, yielding longerateshiravel times,
respectively. Having this knowledge of future events, by their distributioapproximations
hereof, makes the problem stochastic [Hvattum et al., 2007]. Obviousbtdkbastic VRP is a
subtype of DVRP, since not all inputs are known (precisely) until dutiregexecution. Using
this stochastic knowledge has proven useful in guiding the algorithm tevgaradd solutions.

Before looking at the advantages, and general handling, of stochdstimation as a guide
for the algorithms, there are some important properties that need to be takecdount when
switching to a dynamic setting. These properties will be examined in the remaiam@fp
this chapter. In Chapter 4, the use of stochastic information to solve thenityVRP will be

11

3.1. SWITCHING TO A DYNAMIC SETTING

examined. In chapter 7, online algorithms that use no stochastic knowlelige discussed.

3.1 Switching to a Dynamic Setting

Since some variables will be unknown in a part of the execution, it is usefeep track on
some additional information such as the slack between time windows and wisicimers have
already been visited.

Keeping track of the slack in time windows, showing how much it is possible to sifit
to a customer without violating its time windows, can be helpful in quickly determirfitige
prolonging of the current visit, sudden insertion of a new customer, otikeeis feasible.
Keeping track of slack will be examined in section 3.2.

Due to the fact that the travel time, service time, demand, or whichever legiaite dynamic,
may become known or change over the course of execution, the pamt obuking plan that
comes after the current timeis uncertain. On the other hand, the part of the routes visited
beforet has become static, since they are in the past, and cannot be changdantliag of
fixating part of the routing plan is examined in section 3.3. Finally, some ufgfations, in
context of the DVRP will be defined in 3.4.

3.2 Defining Slack: Earliest Departure (¢) and Latest Arrival
(2)

When using time windows in a dynamic setting, it might be a good idea to keep two more
variables associated with each customer; earliest deparand latest arrivat. During the run
of an algorithm, it is nice to know how much slack there is for each customewhat is the
latest and earliest time the customer can be served without resulting in aryoviaathe time
window of the other customers of the route.

The earliest departugefor a customet, as the name suggests, is the earliest time the schedule
allows for the vehicle to finish servicing that customer. Obviously this variat@sed on the

e(c) l(_L‘)

d(c-) ! d(c)
ple-) 40 p(o) " Time
(@)
e(c) I(c)
d(c-) : o) i
o) | d(e©) p(c) " Time

(b)

Figure 3.1: lllustrations of Earliest Departure d(c): Two examples of earliest departures for a cus-
tomere.

12

CHAPTER 3. THE DYNAMIC VEHICLE ROUTING PROBLEM

e(_c) c)

o(c-) i oc) i
ple-) d(c-c) p(c) © Time
@)
e(c) o)
d(c-) ! o(c) i
plc-) de-0) p(c) " Time

(b)

Figure 3.2: lllustrations of Latest Arrival z(c): Two examples of latest arrivals for a customer

route prior to customet ande(c). Letting ¢~ denote the customer prior tg the recursive
formula for earliest departure is given by:

6(0) = e(0) a1
§(c) = max (0(c™) +d(c,¢),e(c)) + p(c), ¢ € cust(y) S
For the depot, which has a service time of 0, the earliest possible time to defrersame as
the start of service(o). For customers the earliest start of a service-fdepends on two things.
Either the previous customer was done early enough for the vehicle to caatomer before
or ate(c) in which case service can startt). If not the service can start as soon as the vehicle
has left the previous customer) and reached customer It takesp(c) to serve customet,
yielding §(c). Figure 3.1 shows the two possible casesi{@y).
Similarly, the latest arrivat takes into account all the customers on the route following cus-
tomerc, to know what time the vehicle can arrive at the latest, and still be able to sest@mer
¢ without causing violations later in the route. Since we know the time that the velhale to
return to the depot (o)), the latest arrival time can be recursively defined as:

z(0) = 1(o)

z(c) = min(z(c") — d(c,c™) — p(c),l(c)), c € cust(y) (3-2)

where the first part of the minimum function makes sure the custerndollowing ¢ will
be reached before its latest arrival time, and the second part erteatdbe time window for
customere is not violated. Figure 3.2 shows two scenarios for calculation of.

3.3 Fixating Served Customers

When dealing with a DVRP, it is desirable to change the routing plan duringuére of the
algorithm, to take the new/updated variables into account. To do this, it issaegdas keep

13

3.4. OTHER USEFUL DEFINITIONS AND FUNCTIONS

Algorithm 1: insertable
Data: Customer to be inserted;f;), customer immediately preceding insertion point
(cpos), route to insert into/)
Result True if insertable, False otherwise

1 if g(cins) +q(p) > Q then

2 | return false

3 else iff i xat ed(c;},,) then

4 | return false

5 else

0(cins) «+ calcé as if ;s Was placed aftef),,
2(cins) « calcz as ifc;,s Was placed afted,,s
slackNext «— z(¢;hys) (0(Cins) +d(Cins, Chos))
slackPrev « z(cins) -(3(Cpos) +d(Cpos Cins))
10 return slackPrev > 0 A slackNext > 0

11 end

6
7
8
9

track of which customers have already been served, since only thef plaetroutes beyond this
point is changeable.

This can be done by associating a flag with each customer, defining wtiethdixated
(ie. immutable) in which case, it is not possible to change the time a vehicle visits itisé/e
fizated(c) = true to define a customer as fixated. At any given tinide customers for which
service has started will be fixated, and it is therefore not possible to mesge tb a different
place in route, or inserting new customers before them. If a custoisdixated, all customers
¢, preceding this will haveizated(c,) = true.

If a customer has already been served, we know its exact time of visit, arefdhez(c) and
d(c) become static, reflecting the visiting time of the customer.

3.4 Other Useful Definitions and Functions

Having defined the variablesc), d(c) and fizated(c), we can now define functions for check-
ing whether an insertion of a customer is possible, calculating the actuaiansend calculat-
ing the effect of removing a customer.

Checking for Insertion: One common functionality needed is to check whether it is pos-
sible to insert a customer at a certain position in the route. The algorithm fastsigwn in
Algorithm 1. As input, the customer to insett,(;) is given, along with the customer immedi-
ately preceding the insertion point,,) and the route. It is assumed that;, is an unrouted
(and not fixated) customer. The first two lines simply tests that the capacitg oEhicle is not
surpassed when inserting the new customgﬁdrs is the customer following the insertion point.
As described above, if! . is fixated, this means that we have already visited it, and hence can-

' ©pos

not change the route before this point, yielding an infeasible insert (limael3a If this is not

14

CHAPTER 3. THE DYNAMIC VEHICLE ROUTING PROBLEM

Algorithm 2 : updateEarliestDeparture
Data: Customere
Result Updated values of earliest departur&sfom customer and onwards until not
necessary, or depot is reached

1 if ¢ # othen

2 OldED < §(¢)

3 | 0(¢) —p(0)+max(d(c)+d(c,) .e(c))
4 if oldED # §(¢) then
5

6

7

\ updat eEar | i est Departure(ct)
end
end

the case, we examine whether the time windows allows for the insert. In line&&ng,s) and
z(cins) are calculated, as if the customer was inserted. Recaltthatlefines the latest arrival
allowed at customet, while keeping the following part of the route feasibd¢c) is the earliest
departure possible for customebased on the previous part of the route. Line 6 along with line
8 and the second part of the if-statement of line 10, checks that the eadesble arrival at
c;'OS is no later than the latest allowed arrival. In the same way, line 7 and 9, alidmghw first
part of the if-statement checks that the earliest possible arrival aetheeustomer, is no later
than the latest arrival allowed. If these requirements are fulfilled, thetioses legal.

Updating § and z: Before examining the algorithms for removing and inserting customers,
we need to look at two important sub procedures, namely the updatifiguad z. As can be
seen from their definitions in equations (3.1) and (3.2), changes in the imlikely to affect
them.

In Algorithm 2, the algorithm for updating the earliest departajeq given. Given equation
(3.1), the algorithm is almost self explanatory, except for a few pointénd2, we save the old
earliest departure of the customer. Line 3 calculates theshewd the two values are compared
in line 4. If they differ, the following customers need to be updated by a recursive call to
updat eEar | i est Depart ure. The reason for this comparison, is that if thealue of
customer is not changed, neither will thevalue of any of the following customers, since they
depend ord(c), and are assumed valid before this algorithm. This might save some computation
time.

Algorithm 3 shows the algorithm for updating the latest arrivgl (Besides calculating a
different value, this algorithm is very similar to 2, and straightforward. iAghine 5 checks
whether the value of(c) has changed. In case it has not, it is not necessary to update the
z-value of any of the previous customers.

Insertion and Removal: Having defined the algorithms for updatifgndz, we can now
look at the insertion and removal of a customer given in Algorithm 4 andspeively.

For insertion, we simply place the customer on the desired position, and ufsdatend »
values. Since the functions for updating these values were recursigghed, the update will

15

3.4. OTHER USEFUL DEFINITIONS AND FUNCTIONS

Algorithm 3: updateLatestArrival
Data: Customere
Result Updated values of latest arrival)(from customer and onwards until not
necessary, or depot is reached

1 if fi xat ed(c¢) = False then

2 if ¢ £ othen

3 OldLA «— z(¢)

4 2(¢) «min(z(c") -d(ec, c) -p(c),l(c))
5 if oldLA # z(¢) then
6 | updateLatestArrival (c")
7 end
8 end
9 end

Algorithm 4 insert
Data: Customer to be inserted;f), customer before insertion point,;)

1 placec;,s betweerc,,; andc;,

2 updat eEar | i est Depart ure(Cs)
3 updat eLat est Arri val (Cjns)

Algorithm 5: remove
Data: Customer to be removed)(

1 removec from betweerc™ andc™
2 updat eEarl i est Departure(c™)
3 updat eLat est Arrival (c™)

propagate to the relevant customers. It is assumed that the insertion kedliecvalidity (by
Algorithm 1) before a call to insertion is made.

The removal algorithm is just as simple. Here, the customer is removed friovedr®:— and
¢, and theis andz values are updated. The reason the caliddat eEar | i est Departure
is only done on:™, is that the update will propagate ¢0 via the functions recursive nature.
The same holds farpdat eLat est Arri val andc™.

The functions described in this section is used as sub-proceduresiigrahthe algorithms
implemented in this thesis. The actual selection of, for example, a customer itb(ipse as
well as a suitable insertion point,) is handled by the algorithm using these sub-procedures.

16

4 Online Stochastic Algorithms

As described above, one way to handle the DVRP is by online algorithms. isThideed a
realistic approach and clever algorithms are developed that allow for §iggiod solutions. But
often one is not completely oblivious of the future events which the oblivimlise algorithms
fail to take advantage of. Stochastic knowledge can often be made availdbtd is what
Van Hentenryck and Bent use to guide in their algorithms presented in thigechaVhen
future events are known to some extent by their probability distributions,ythendic problem
is defined to be stochastic [Hvattum et al., 2007].

While one might not have an exact stochastic model, some stochastic knevdaddpe de-
rived from historical data, or through the use of a Hidden Markov Modf¢hatever method
one uses, having these probabilities available can be of great help wéeting the routing
plan. The weakness of the oblivious online algorithm, is that it does na &aything to base
its decisions on, except for the requests that have been made at ggimem time, and the
routing plan generated thus far. When having a stochastic problem, onesedahe knowledge
of the variables to attempt to predict future requests, and use this to guidigtmighm to better
solutions, which is exactly what Van Hentenryck et al. does.

It is easy to think up cases in which some sort of knowledge of futuretewee probable.
When routing police vehicles, often some neighborhoods are more deesmsiof crime, more
crime is committed during the night, and wealthy neighborhoods are subjeeasst amounts
of break-ins, and even more so during holidays. For a package detieenpany, industrial
neighborhoods will have many requests during the working hours, artdirc big companies
will be more likely to request service than smaller companies.

A problem can be stochastic in several ways, depending on which legiate dynamic (and
known by their probability distributions). For the problem treated in this pajpstomers arrive
dynamically as the algorithm proceeds. When a customer appears, alligblear ie. time
windows, location, demand and service time, are known. For this thesibastacknowledge
of all variables of requests is assumed available.

4.1 Algorithm Overview

In the Online Stochastic Algorithms presented by Van Hentenryck and B@06] and the arti-
cles referred to in section 1.1, the stochastic knowledge mentioned abditzéiun different
ways to achieve good online solutions to the stochastic VRPTW. In this sectiotraductory
overview of the main algorithm will be given, along with a short descriptiotihefextensions to
this and a reference to the sections where these are described.

In the main algorithm, a partial “master” plan is kept which is fixated up to theenttime
t. At all times, the algorithm also has a set of visible but unrouted customasedBon some

17

4.2. GENERIC ONLINE STOCHASTIC ROUTING ALGORITHM

stochastic knowledge, the customers of the remaining time hofizbjcan be sampled. This is
done utilizing the stochastic knowledge, an estimate of the total number oftegprcstomers,
and the customers currently visible. These sampled customers, visibleemhsestomers, and
partial plan make up a “sampled instance”. This sampled instance can bd bgleeregular
offline algorithm, which of course should be modified to only change the phttte plan which
is in the future, ie. the customers not in the partial plan. By generating, @withg several
of these sampled instances whenever time is available, the algorithm continbasis pool of
sampled instances available. When a vehicle is idle, due to having finisivacksara customer,
the decision of which customer to add to the partial plan for the idle vehicle ellmasthe pool
of sampled routing plans. When the next customer for the vehicle is chibgepool is pruned
for plans not compatible with the partial plan. In this way the construction afahte is guided
by the sampled plans.

The generic algorithm for this is described in section 4.2, and variationgepscedures are
described in the following sections. Section 4.3 and 4.4 describe differgg of choosing the
next customer to serve; the Consensus [Bent and Van Hentenry@kbpalgorithm in section
4.3 and the Regret [Bent and Van Hentenryck, 2004c] algorithms in 4.4.

For the basic Regret and Consensus algorithms, only real customebe catected to be
served next. Van Hentenryck and Bent presents two different sigatiy allowing the selection
of sampled customers as next, called waiting and relocation. These strategiesmpatible
with both Consensus and Regret, and are described in section 4.5.

As described in Chapter 1, one of the aims of this thesis is the extension tléfaenryck
and Bents model to allow arbitrary positions and properties of the sampleahoars. This is
described in section 4.6, and the method for pruning of customers is debs@nilsection 4.7.
The idea of sampled customers, is that they represent potential reameustoTherefore, if
a materialization of a sampled customer becomes available, this should of beusseviced
instead of the sampled customer. This is described in section 4.8.

4.2 Generic Online Stochastic Routing Algorithm

In this section the general stochastic online algorithm is outlined and thetiebpants of it are
explained. Some of the sub-procedures will require more detailed exiplasawhile others
have several options for implementations. These will be discussed in theifajicections,
rather than here.

The outline of the General Stochastic Online algorithm can be found in Algor@h The
algorithm starts by initializing the partial plan to empty (line 1), and retrieving tlgests
available from the start (line 2). Based on these, along with stochasticlédgevof the cus-
tomers, a pool of plans is generated containing a mixture of sampled aralistamers. This is
done in thggener at eSol ut i ons function, detailed in Algorithm 7.

Inline 4, the main loop is entered, stepping one unit in time for each iteration, thiegpartial
plan is fixated up until the current time Following this, the newly visible customers are re-
trieved (line 7), and if one or more are materializations of sampled customeses pattial plan,
this materialization is done. This is followed by a pruning of the plans that areamapatible
with this materialization (line 8-12). A discussion of the materialization of custois&iene in

18

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

Algorithm 6 : Generic Online Stochastic Algorithm
Result Full Plan~y,

1 7p < empty plan

2 Ry <+ customers available at start

3 I" — gener at eSol uti ons(~,, Ro, t, h) //See Algorithm 7
4 fort — 1to hdo

5 Ve Vi1

6 v — FixUntill (¢)

7 R; + customers becoming available at tite
8 if materializabl e(R;) then

9 v —materialize(Ry

10 R, — R\ materialized(Ry)

11 I' < prune(Iy

12 end

13 P,y —get | dl es(%)
14 | if Py ¢ 0then

15 ts «—chooseRequest (v, I")

16 for i «— 1 to number of vehicles: do
17 if p; € P,y then

18 ‘ Pi < Pi: ts;

19 end

20 end

21 ' —prune(T,)

22 end

23 I' — gener at eSol uti ons(v, Ry, t, h)
24 end

section 4.8.

If a vehicle has no (more) customers assigned or when it has finishédesat a customer, it
is considered idle. When a vehicle is idle, a decision will have to be made oh whétomer to
serve next. Line 13 and 14 checks whether any vehicles are idle. If tiie tsase, the decision
of which customers should be assigned to the vehicles are made by adatids eRequest
(line 15). This is based on the current plag) @nd the pool of sampled plahs Van Hentenryck
and Bent present multiple ways of deciding which customers to serve meikthia is described
in detail in the following sections (section 4.3-4.5).

Line 16-20 extends the routes of idle vehicles with the customers selecthdaseRequest .
The pool of sampled plans is updated in line 21, by pruning plans that ampatible with
the new requests. The mechanics of the pruning is described in more detstion 4.7.

Finally, in line 23, more sampled plans are added to the pool of sampled sol€tiotie
remaining time by a call tgener at eSol ut i ons (Algorithm 7).

In Algorithm 7, the remaining customers are sampled (line 3), and the resulstanie is
solved using some offline algorith@, and the result is added to the pool of solved sampled

19

4.3. CHOOSING REQUESTS BY CONSENSUS, CHOOSEREQUEST-

Algorithm 7 : GenerateSolutions
Data: Partial plany, visible unserved customef, current timet, time horizonh
Result Pool of solved sampled instanceés

20
repeat
A — Ry :sanpl e(t, h)
T — T O, A)
until time t+1

ga A~ W N P

instances (line 4). This is repeated as long as time is available.

4.3 Choosing Requests by Consensus, chooseRequest- C

We now consider one of the algorithms for choosing which customers te sext, when a
vehicle is idle. This algorithm is called Consenstiy @nd was presented in the article Bent and
Van Hentenryck [2004b]. Consensus functionality is achieved thramgtementation of the
chooseRequest function in the general stochastic online algorithm given in Algorithm 6.

The main idea is to choose the customer which most of the sampled routing ptarsoag
— or rather, choose a customer based on consensus of the sampledTgiansasic idea is;
for each of the routing plans, find the customers it serves next on eatd, and increment a
counter for each of these customers by one. After having looked ateadlaimpled routes, the
higher the counter of a customer, the more consensus there is of placed @dma route. In
other words, the mode of the customers to serve next on each routeds #bfiiniie the principle
is very simple, there are some things to take into consideration, such amgriterresulting
customer selections are feasible, how to handle sampled customers anddreaktties.

A more detailed explanation of the algorithm along with at discussion of thadmmasions
mentioned above is given below, in section 4.3.1.

4.3.1 Algorithm Outline and Explanation

An outline of the algorithm is given in Algorithm 8. In the first line, a détof all visible
requests at the current timds created. Line 2-4 initializes a countgrfor each of these re-
quest to 0. Thd i rst NonFi xat edReal function, given a routing plan, returns the first
non-fixatedreal (ie. not sampled) customer for each route. These customers are sahed in
settr. For each of these customers, the score is increased by 1 (line 7-8).isTdone for
all routing plans (line 5-10). In summary each decision of customer is eealuadividu-
ally and independent of the vehicles they are assigned to. Finally, in linth&Jlan which
has the set of i r st NonFi xat edReal that sums up to the highest score is found, and its
firstNonFi xat edReal customers are returned (line 12).

A more extensive explanation of line 11 might be suitable. Each plé evaluated by
summing the evaluation of its next first non-fixated real custorfigts..r,,):

20

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

Algorithm 8: chooseRequest-
Data: Sampled routing pland?)
Result List of consensus customers
1F— UE:O R
2 foreachr € F do
3 ‘ f(r) <0
end
foreach~ € I"do
tr «—first NonFi xat edReal ()
foreachtr; € tr do
| f(trs) — fltr) +1
end
10 end
11 v¢ «— argmax(y € I') Y /", f(firstNonFi xat edReal (v);)
12 return fi r st NonFi xat edReal (¥°)

© 00 N o O b

m

F)=>"fr)

i=1

The planyy that has the highest value ¢f~) is selected as being the best.

There are several important points to be made in connection to the Coasdgetthm. First
of all it is noteworthy how the sampled customers of the plans are handleén Whbking at
which customers each plan has set to be served next, only the real cissemaeonsidered.
This is done via thé i r st NonFi xat edReal function, and ensures that consensus can only
be on real customers. There are also alternative strategies, wherkedamgtomers are not
being ignored. These will be described in section 4.5. It might seem illogicaaluate cus-
tomers independently of routes, and then selecting the plan with the higbest btstead, one
could evaluate customers vehicle wise. Then return the consensuscfovelicle as being
the customer with the highest score that appears as first non-fixatedistamer in that route.
The reason for not doing so is to avoid infeasibility. For example, the sasternar could be
chosen as consensus for two different routes, which would be batsirable and infeasible.
By evaluating entire plans, it is ensured that a overall good, and feas@hstion of consensus
customers is made. A final thing to point out, is how ties in line 11 is handled if twoare
plans have the same total score. This is handled by selecting one randomly.

There are some problems with the Consensus algorithm. It is qualitative, irerise ghat
it increases the evaluatighof a customer by one, and ignores the actual score of the solution
the customer is part of. It is also elitist, in that it only credits the best requebile all others
are ignored. The qualitativeness can be remedied by increasing thatemalaf a customer
by the objective function it is part of. While this makes it quantitative, adogrtb Bent and
Van Hentenryck [2004c], this results in favoring the best requests mare, contributing to
the algorithms elitism which is undesirable. The problem with elitism, is that seraraésts

21

4.4. CHOOSING REQUESTS BY REGRET, CHOOSEREQUHST-

might be almost equal in quality, but only the very best receives credith&unore, and more
importantly, a request may not be the best for any sample, but might berataugt overall.
Attempts to address these issues were made with the Regret algorithm, discititesfollowing
section.

4.4 Choosing Requests by Regret, chooseRequest- R

The main motivation for the Regret algorithm [Bent and Van HentenrydB4&]) was to address
the issues the Consensus algorithm had with elitism. Only increasing the evaloftioe
best requests is problematic, in that it does not consider almost equallyrgquoests, or the
overall robustness of a request. This is attempted remedied by introdueirepttet of a request
r. That is, an aprroximation of the difference in quality when choosimgther than the best
customer of the vehiclg ie. fir st NonFi xat edReal ;. In many applications, this can be
done relatively fast, and the possible gain in selecting a suitable consaightsbe worth the
extra computations. A more detailed description and algorithm outline will bendivehe
following section.

4.4.1 Algorithm Outline and Explanation

An outline of the Regret algorithm is given in Algorithm 9. The algorithm is éyabe same as

the Consensus algorithm given above, except for lines 9-11, in whéobviduation of the regret
customers is made. Here, the set of customers for which to calculate ilegosisidered. For
each customer in this set, if it is possible to interchangeand thef i r st NonFi xat edReal

of the current routet(;), the evaluation of is incremented (line 11). As suggested in by Bent
and Van Hentenryck [2004c], the increase in evaluation for the regstomer- is 1 if a feasible
swap can be found, artdif not. In this way, it is recognized that some choices of customers are
equivalent, and furthermore, flexibility is awarded, by awarding custsmhett can feasibly be
swapped, thereby eliminating some of the elitism from the Consensus algorithm.

It still remains to specify for which customers to calculate regret. AlthougliRétgret algo-
rithm has been detailed in several articles, it is unclear exactly which cust@resubject to
regret calculation. There are several options, and these will beiloeddn the following.

In Bent and Van Hentenryck [2004c], the following explanation oneegrgiven;

Consider the decision of choosing which customer to serve next on vetdcie let

s be the first customer on the royief vehiclev. To evaluate the regret of another
customer- on a vehiclev, the key idea is to determine if there is a feasible swap of
r ands onwv, in which case the regret is zero. Otherwise, if such a swap violates the
time window constraints, the regret is 1.

This could indicate that only customers on the same route are considefadn®g, to be the
part of the current sampled route that is not fixated, thé?seif regret customers would be:

Re = puﬂF (4.1)

22

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

Algorithm 9: chooseReques®:
Data: Sampled routing pland?)
Result List of consensus customers
1F— UE:O R
2 foreachr € F do
3 ‘ f(r) <0
end
foreach~ € I"do
tr «—first NonFi xat edReal ()
foreachtr; € tr do
Ftrs) « ftrs) +1
foreachr €r egr et Cust oner s do
10 if Interchange of- andtr; is possiblehen
11 | f(r) — fr)+1
12 end
13 end
14 end
15 end
16 v¢ — argmax(y € I') Y1 | f(firstNonFi xat edReal (v);)
17 return fi r st NonFi xat edReal (7°)

© 00 N o O b

Another option would be to calculate regret of visible real requests frenetiire plan, that
has not yet been served. This method will make the algorithm even less eligifhirig +,, to
be the part of the plan that is not fixated, the Betwould be:

Re =y, [F (4.2)
Although consensus has only been calculated for real requests strdéegies for accepting
sampled requests have been developed by Van Hentenryck and Bemgfoedhresults. These
will be explained in the next section. In terms of regret, this means that it mMighhzake sense
to consider the regret of sampled customers. In the same way as abowsulldite done for
both the current route, and the entire plan. This yields the sets 4.3 andgpéctively:

Res = py (4.3)

Regs =, (4.4)

The main problem with calculating regret only for the current route, is thatrtiight not
eliminate the elitism sufficiently, since the increase in evaluation due to regrets beglery
small. Remember that the regret customers have to be interchangeable witistib@erts;,
which means time windows have to fit which is more unlikely the furtherand the regret
customer are from each other in the plan, time wise. On the other hand, talgulegret
for the entire remaining routing plan, might result give too influence to theeteglculation.

23

4.5. TWO ALTERNATIVE STRATEGIES: WAITING AND RELOCATION

Furthermore, calculating regret for all the customers in the plan is time conguniinis is
examined imperically in section 9.2.

4.5 Two Alternative Strategies: Waiting and Relocation

The Consensus and Regret algorithms described above only coreatlezquests when decid-
ing which customer to serve next. In Van Hentenryck and Bent [2006]atternative strategies
are suggested in which sampled customers are also considered. Téheoerar inherent prob-
lems when only considering real customers. Imagine, for example, thatitheonsensus for
some customer at a given time. It could be that’s time window is startingd(c)) quite far
from ¢, in which case the assignment©fo the route in question, would mean the vehicle will
drive toc and simply wait. Whilez(c) is likely to be reasonably close tothe waiting time at
¢ might be better spent. Furthermore, if there is a high probability of a customeriaiizing
(ie. a customer that was sampled actually appears) in some area, this wallighdeexpressed
by a consensus on serving a sampled customer in this area by the pooigédalans. This
information is lost when only considering real requests, and if the custimaeed materializes,
it is likely that the final result would not have been as good, as if the omusgor the sampled
customer had been taken into consideration.

The question of what to do if there is consensus of a sampled customerrsiling Van
Hentenryck and Bent presents two strategies: Waiting and Relocatidorecn the following
subsections.

4.5.1 The Waiting Strategy

The Waiting strategy is based on the recognition that in some circumstanceshitmigbe

desirable to rush to the first real customer, and then just wait there, l#aibed in the above
example. Instead, if there is consensus for at sampled customer, thie wedits at its current
position. In this way, new requests will have a chance to appear anddreitdak consideration.
This strategy is particularly useful for instances in which the bottleneck ismthenization of

traveling times, and it is relatively easy to serve all the customers. For tieprs of online

stochastic vehicle routing similar to those treated in this thesis where servingstiiners is
hard, Van Hentenryck and Bent documents in their book, that the Relocsttiategy yields
better results. For this reason, the waiting strategy has not been implemegtathiction to
this thesis, but for details of the algorithm the reader is referred to VaneHgmck and Bent
[2006].

4.5.2 The Relocation Strategy

While the waiting strategy addresses the problem of serving the realstsgoe eagerly, the
problem with simply waiting when a sampled customer is consensus, is that itpantiaularly
efficient when the objective is to serve as many customers as possibleignsl tiard. An
alternative strategy, dubbed Relocation, still recognizes the potent@htadye in not rushing to
serve real customers, but does this by treating sampled and real cusegpaily, and serving
the consensus customer, even if it is sampled.

24

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

If the consensus is a sampled customer, this means there is an incredssdlipydor a real
customer to appear at that location. By moving to the sampled customer, théewshibe
closer, in case the customer appears. While this might seem drastic, Véentek and Bent
have achieved good results with this strategy. Note that this strategy isdesigable when the
primary objective is to minimize travel distances.

In Algorithm 10, the Relocation strategy is shown for the Consensus algoritlhe Regret
algorithm can be modified in a similar way to implement Relocation. In line 1, the idefau
evaluation is set tof = 0. Line 2-9 are essentially identical to the last part of the origi-
nal Consensus, except that we now do not filter out sampled customérscall a function
firstNonFi xat ed, rather tharf i r st NonFi xat edReal , and hereby take the first cus-
tomers following the partial plan, disregarding whether they are realnopleal.

Algorithm 10: chooseRequesiR
Data: Sampled routing plang
Result List of consensus customers

1 Set default evaluatioffi(c) to O for all ¢'s.

2 foreach~v € I"'do

3 tr —firstNonFi xat ed(~)
4 for i € 1..m do//recall m is number of vehicles
5 ‘ f(t?”i) — f(tT’i) +1
6 end

7 end

8 7¢ —argmax(y e I')> 7", f(firstNonFi xat ed(y);)
9 return first NonFi xat ed(v°)

There are a few implementational considerations to be made in connection teltwafion
strategy. Van Hentenryck and Bent have not described their agpreadhe approach taken
in this thesis is based on the authors own considerations. One such catisidéo make, is
how to “service” a sampled customer. The one obvious solutions would kbithey simulate
servicing a real customer, by driving to it, wait until ready, stay for falivéce time, and then
drive on to next customer, unless of course the customer is materialized imeiatime, in
which case the vehicle immediately starts service. Another solution would be siripdyto
the sampled b customer, and hope it materializes on the way. If this is not etlvasehicle
simply moves on, as soon as it arrives. Both approaches have weaknds the first, much
waiting is potentially involved in case the customer does not materialize, whichvhaiswas
attempted avoided in the first place. For the second approach, the prisbieat the vehicle
might leave the customer before it is materialized.

For this thesis, the first approach was used, in which a simulation of seéakiee place at the
sampled customer. If it materialized, service is started at the customer aaspossible. This,
of course, requires a specification of the criteria for materialization. This ot detailed by
Van Hentenryck and Bent either, but the approach used in this thesissvd#$cribed in section
4.8.

25

4.6. ALLOWING ARBITRARY LOCATIONS AND SAMPLES

4.6 Allowing Arbitrary Locations and Samples

To make the sampling realistic, it seems reasonable to allow customers to apakaossible
locations with all possible time windows, demands and service times. Howquehlam arises
if this is allowed, since the probability of sampling two customers at the exact gasitéon be-
comes smaller when the number of potential sample locations increase, ievérsalg propor-
tional to map size and sample resolution. This means that the probability of haamsgnsus
for a sampled customer is increasingly small (especially if the map is continutasiimg in-
finitely many locations). One way to handle this is by discretization of the map. gibis,
one can define customers in the same discrete area, to be considenmeglas sapresenting the
same customer. This will be described in detail in section 4.6.1, below.

Despite a small e-mail correspondence with the author Pascal Van Hgrkeiis not clear
how they handle this problem in the book, except that they do not usetistion of the map.
Even in an article of Bent and Van Hentenryck [2005], dedicated to thgsuof sampling in
connection to the Consensus and Regret algorithms, it is not quite clesawdtth mentioning
that it is only when using the Wait and Relocation strategies that the probises anecause in
only these cases is consensus of sampled customers involved.

It might be a deliberate decision based on two facts. If the sample base #06grede-
fined potential customers (with predefined time windows etc), each with soohalglity of
appearing, and the instance size is 100, this dramatically increases tlabifitplof consensus
of sampled customers. Having a sample base of this limited size makes the Waitlacd-R
tion strategies reasonable. If this is indeed the sampling approach useuhyevitenryck and
Bent, defining two samples equal only when they have the exact sameat@speakes sense.
Having a sample base of, say, 40.000 predefined customers on a 10Meusstance, makes
these strategies less useful. Another sample base could be by havingistibatibn model
for different areas of the map, defining distributions of locations, time wisdoemands, etc..
This approach would make the need for a discrete map even greater.

In the end, it comes to down to the nature of the problem at hand. If orsgdeya a problem in
which customers will always appear on fixed point on the map, with suftlgieigh probability
to make consensus of samples influential, the approach of Van HenteamgldRent could be
used. If, on the other hand, one considers a problem in which cust@aerEppear anywhere
on the map, and potentially with any time window, demand etc., a discretization of fhésma
needed.

In any case, Van Hentenryck and Bents description of their sample bassufficient for
reimplementing it without making assumptions for the details.

As described in the introduction, one of the aims of this thesis is to attempt to make the
sampling mechanics more general and realistic, and modify the algorithms tte llisd As
mentioned this can be achieved by discretization of the map.

4.6.1 Discretization of the Map

As described above, the idea is to discretisize the map, into small areast fRathatilizing the
probability for some customer to emerge, one utilizes the probability of a cusagppearing in
a discrete area. This seems realistic for eg. routing police vehicles. Haeerlight be areas

26

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

with particularly high crime rate, like bars, ghettos or high-class storeshigidy unlikely that
any single jewelry store could have a high enough probability of beingaebhicreate any kind
of consensus. But if one looks at an area of, say, 15 high-clagssthere might be sufficiently
high probability, to result in a potential consensus to send a car there.

When discretizing the map, it is necessary to consider the degree oftdiatiom. The idea
of discretization is to make a method for either identifying sampled customerp@seating
the same, or group an area in which it does not matter for the routing plam whgtomer is
appearing (because they are so geographically close). If the diaceateare too large, samples
appearing in the area might not represent the same customer, or custoigbtde too far
away from each other for it to make sense to group them. Having areaarth#o small
make the approach more like that of Van Hentenryck and Bent, resulting inuadesirable
low probability for sampled customers having consensus. The larger tretdigreas are, the
greater the probability of two different sampled plans have a sampled cusiortiee same
square, and consequently greater probability of selecting that aremssnsus. In effect, this
means the a more detailed discretization, results in a higher priority of reahceis. The effect
of discretization is tested and tuned in section 9.3.

When implementing the discretization some changes in the algorithms are neadtdf F
all, the evaluatiory (c) should now be done on the discrete areas, rather than on customer in the
Consensus and Regret algorithms with Relocation. When a consenseeigsund for a plan,
the consensus is for areas rather than customers and so might be hassdral customers - if
relocation is used, these might include both sampled and real customergisfoddnas to be
made on which one of these customers to actually serve next. For this thesigsstbmers from
the routing plany with the best evaluation are selected. Another option, when using Relacation
would have been to prioritize real customers over sampled ones: so if the pks a sampled
customerc, as next for a route, but the area @f contains a real customey., ¢, would be
selected instead, as consensus. This might help the algorithms to be able to serve more (real)
customers; but there are some complications. It needs to be checke@&nthetheplacement of
¢s With ¢, is feasible for plany. First of all, the difference in time windows, location, service
time, etc., might make the plan invalid. Secondly, a check'®foutes must be done to ensure
thatc, is not present elsewhere.

When a request has been chosen, and added to the partial routeggras to be made. This
is due to the fact that even though two customeandb, from plansA and B, respectively, are
in the same discrete consensus square, only oney,sayxhosen. It might not be the case that
plan B is compatible witha (replacingb with « is infeasible) due to time constraints, demand
or something similar. In this case, the plBrhas to be pruned from the pool of sampled plans,
even though it agreed on the consensus. Pruning of plans is desgridredhoroughly in the
following section.

4.7 Pruning of Sampled Plans
When a change has been made to the partial plan, such as adding censgstemers to the

routes, the pool of sampled plans has to be pruned for incompatible plérese @ire several
ways this can be done, and it depends on whether the Relocation strageggdn used. Van

27

4.7. PRUNING OF SAMPLED PLANS

Hentenryck and Bent prune all sampled plans that do not have thesaxaetcustomers as next
in their route as the partial plan. If the Relocation strategy is not used, thissntieat the first
real request of the consensus route and sampled route should benikhe Iahis is the case,
all sampled requests before this on the sampled route, should be remagesething the real
customers as the next. When it comes to the Relocation strategy, Van Hektehgl. do not
specify ther criteria for two sampled customers being the same. But if onehasly limited
sample base of say 400 possible customers, the equality of two sampled asstoose likely
means it is the same exact sample of the 400 available, and so it is likely to bedanthe
same way as without the Relocation strategy.

The Consensus and Regret algorithms depend on the pool of sampled@larake good
decisions, and one risk with pruning in this manner, is that too many plans megbtumed,
resulting in a very small pool. Furthermore, having a big or continuous sab@de when
it comes to sampled customers in the Relocation and Wait strategy becomes feegligib
alternative strategy, implemented for this thesis, is to attempt to modify the sampetb dia
the customer of the partial plan.

Algorithm 11: Prune for Relocation
Data: Sampled routing pland, current partial plan;)
Result Sampled routing plang™]

1 foreachy € T" do

2 for i — 1to m do

3 ¢ < last request on vehiclein ~;

4 cs «— firstNonFi xated(p; €7)

5 if ¢ = ¢, then

6 | continue

7 else ifsaneAr ea(¢, ¢;) A replacecs with cin p; if feasibleA ¢, is sampled
then

8 \ insertc in place ofc, in routep; of plan+y

9 else

10 ' —T\y

11 break route loop

12 end

13 end

14 end

In Algorithm 11 this algorithm is outlined. In the outer loop (line 1-14), eaghad plan
is examined. An inner loop (line 2-13) runs through each of the routest, Eire last request
c of the route of the partial routing plan is found, and then the first non fixabstomer, of
the current plans route is found. If the two requests are the exact sarsmply continue to
the next route (line 5-6). If not, we check whether they are in the sameethBsarea and if it is
possible to insert customerin the place ofk;. If this is the case, we do not have to prune the
plan, because the plans will still be compatible, as longsas replaced by, which is done in
line 8. There is one more criteria for this replacement. This is due to the faet tbauld indeed

28

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

be a sampled representationagh which case it makes great sense to do the replacement. If
is real, the plan is pruned because in this case it does not meet the amsEmsrements, since
a real customer will never represent anything but itself.

In terms of the regular Regret and Consensus algorithm, ie. without Wételrcation,
the pruning is done based on first real customer in the sampled route. @tthbis is not
specifically described by Van Hentenryck and Bent [2006], this seerhe the most obvious
way of implementing the pruning. So a plan is pruned if the first non-fixataldcxestomer is
not the same as the customdrom the partial plans route.

4.8 Materialization of Customers

When using the Relocation strategy the customer selected as consensesecaampled cus-
tomer. If a sampled customer is consensus, from here on referred teegpaint when assigned
to the partial route, it means that the consensus of the sampled plans is acsaugdtener. In
other words, statistically, there is a relatively large probability for a cust@ppearing at that
spot, so the sampled plans agree on moving there.

The problem of having a sampled customer in the partial plan is that, since itlieaipthe
vehicle sent to serve it has no actual customer to serve. Rather it had &t e partial cus-
tomer, until “service” is done and it is assigned a new customer to visit. In this tiraerehicle
neglects to serve any real customers which seems undesirable. Sinaengfiasng has shown a
high probability for a customer appearing in that position and time span, tbalgitiby of a real
customer appearing with similar properties, is relatively high. If one suchrialiation takes
place, we need to allow for the vehicle to immediately serve this new custometoggmsesvice
at the sampled request currently being served.

In a real life problem this would be similar to having a vehicle, eg. police cae do some
area where the sampled plans has indicated a high probability of servigerimsded, eg. an
area of bars at closing time. While the vehicle stays in that area, “servisgfhpled customer,
a real customer calls for service. The vehicle then immediately leaves forehisustomer.

In practice, whenever a new customer becomes visible, it is checkedevtibih customer
is a materialization of a current waypoint being served. This can include tingow, demand
and position. If these criteria fit, the waypoint immediately stops being “sereed the new
customer is served as the next in the partial route. Next, the sampled mansated to include
this new customer, and pruned if the inclusion if infeasible.

Algorithm 12 outlines the algorithm for materialization of a customer. The outgritecates
through the routes. We are only interested in the routes which ends in a saguptemer (line
2-4). Line 5 checks whether some criteria for materialization between thithantew visible
customer holds. If this is the case, the actual materialization takes place. 6iTinee set the
earliest departure far; to the current time, allowing the vehicle to leave right away. We then
add the materializatioato the route. Line 8-18 loops through all the sampled plans, attempting
to insertc into the plan in the same manner as with the partial plan. Since the sampled plans,
unlike the partial one, have customers followi)gthey do not necessarily have room for the
materializatiorz, in which case they are pruned (line 12). In case a materialization hasedcu
the function stops, having successfully materialized the new custertfero candidate is found

29

4.8. MATERIALIZATION OF CUSTOMERS

Algorithm 12: materialize
Data: New customer, partial routing plany, current timet
Result Materialization ofc if criteria is meet, pruning of infeasible sampled plans

1 foriel..mdo

2 p «—routei of partial plany
3 ¢; < last fixated customer ip
4 if ¢; is a sampled customéinen
5 ifcriteriaMmet (¢, c) then
6 (5(61) —
7 addctop
8 foreach~, € T" do
9 ps < routeq of ~
10 cs < last fixated customer ip,
11 ifcriteriaMet (cs,c) then
12 d(cs) — ¢
13 addc to p;
14 else
15 | T
16 end
17 — T\ s
18 end
19 break for loop
20 end
21 end
22 end

for materialization, the partial plan is left unchanged. Note that this functionld be called
for each new visible customer.

It is worth noticing that the function prioritizes the first route in which a mateaditim can
occur, rather than looking through all possibilities, and materializing the mgstthat fits the
newly visible customer the best. A way this could be achieved, is to define dacofditness
for a materialization, iterate through all routes, and materialize the customer wikiet fit.

Left to defineistheri t eri aMet function. In terms of location, the sample and its materi-
alization should be in the same square, as explained in section 4.6: Allowiitgafyt ocations
and Samples.

e(c) < d(a) (4.5)
z(c) > max(c¢; +d(c; ,cr)),t) +d(cy,c) (4.6)

In terms of time, two criteria for equality are defined in equation (4.5) and.(&£uation
(4.5) accepts materialization only if it is ready to be served before the eatéparture of the

30

CHAPTER 4. ONLINE STOCHASTIC ALGORITHMS

sampled customer. (4.6) checks if we are able to reach the new customeledwe the sampled
customer as soon as possible. Note heredhas the customer previous tg. If the vehicle is
on the way to the customer, we allow it to reach the customer first to avoid thdicatigns of
having the vehicle change directions mid-route. Else we can simply leaveuitrahctimet.

Q> q(p) —q(a) +q(c) (4.7)

The last criteria to check is given in (4.7). It simply makes sure that the miiatian of the
sampled customer is not violating the capacity of the vehicle.

If these criteria hold, the earliest departure of the materialized customdrecaalculated.
The incompatible sampled plans are now pruned, so only valid plans are igftthe new
materialized customer.

31

4.8. MATERIALIZATION OF CUSTOMERS

32

5 Instances

To be able to test the algorithms described in this thesis, two different cetegbinstances are
used. For benchmarking the offline algorithms used as sub-procdduhesOnline Stochastic
Algorithms, the Solomon instances are used. For testing algorithms requiraigstic knowl-
edge the instances have to be generated, since no instances with a kabainilgy distribution
were available. The instances, along with functionality for converting theomlioe instances
are described in this chapter.

To investigate the performance and quality of the offline algorithms, ben&himstances
are needed. A very common set of benchmarks to use when dealing witlRIR&W are the
Solomon instances [Solomon, 1987]. These will be described in section 5.1.

Several of the algorithms implemented in this thesis depend on the existencelwsiio
knowledge of the instance they are used on. This is not available for tben8o instances.
Generation of instances with stochastic knowledge available is done bydhw as instance
template, implemented for this thesis, and described in 5.2. The benchmaekatgenwith the
use of this instance template are described in section 5.3.

The Solomon instances are offline instances, meaning that all requestsoare initially.
The instances generated by the template are also offline. To make the isstatine, some
customers need to appear during the day. To achieve this, the appifodah dentenryck et
al. is used, in which 5 classes of hardness are defined. Offline instareeonverted to online
instances by defining at what time the requests will be made, ie. what time tbemnbevisible
to the solving algorithm. The lateness of the visible times are dependent on ahgshthe
online algorithm belongs to. This is be described in section 5.4.

5.1 Solomon Benchmarks

To be able to compare the efficiency of the implemented algorithms to those of,athermon
benchmark instances are needed. The choice of the Solomon bencli8admon, 1987] is
based on the fact that they are some of the most common benchmarks in VVRR@Whey
challenge the algorithm in different aspects.

The Solomon instances make up a total of 56 instances and are split into |6rpreéts.
The naming convention of the instancesDBm D defines what class the instance i3, C
or RC. In R, the customers are positioned randomly(irthey are clustered, and iRC' the
positions are a mixture of thesel can be either 1 or 2, where instances of type 1 have a
short scheduling horizon, allowing only few customers per route. Tyipstances have a long
scheduling horizon allowing many more customers being served in one Begales this, the
instances differ in terms of their time windows. Overall this gives a testing @mvient that
challenges the algorithms in many different aspects.

33

5.2. INSTANCE TEMPLATE

For each Solomon instance, versions with 25, 50, 75 and 100 custoni&iss ak on a 100
by 100 unit map. In the context of this thesis, only the instances containihgu€iomers are
considered.

The most recent (optimal) solutions that could be found for these instamcegound in April
2008 [Jepsen et al., 2008]. For several of the instances, optimal sautave not been found.
Furthermore, to be able to compare the implemented algorithm with alternativesgligtvant
to look at heuristic solutions found. M.M. Solomon has compiled the best sadutiamd by
heuristics [Solomon, 2005]. Although this was last updated March 20B&sihot been possible
to find more recent heuristic solutions. A compilation of both optimal and heusetigions
can be found in Table 6.3, page 53.

5.2 Instance Template

To be able to test the Online Stochastic Algorithms, a stochastic model or histdaicadeds
to be available for the instances the algorithm is solving. When solving a reahdfance, this
could be accomplished by the use of historic knowledge, statistics or somethiitgr. It has
not been possible to acquire real life data within the time frame of this thesisissis tint an
option. Furthermore, only having a few real problems does not allow otestdhe algorithm
on a variety of instance types.

For testing the algorithms on different instance types with historic data avaitabke algo-
rithms (and stochastic data) were generated by means of an instance template.

The basic idea is to split the map into smaller areas. For each of these, iitpdatributions
are defined for customers demand, time windows, ready times, etc.. WheagsHigén set up,
the instance template can now be used to sample instances. If one wantddaorgetance,
this can be done by creating a templatd’he main instance can then be generated by sampling
p and defining this as the main instance. This instance can now be solvegcande used to
sample instances with similar stochastic properties.

Below, the properties that needs to be defined for an instance templatgkiaed.

General: Before looking at the specific areas, some general settings shouldibeddfor
the instance template.

The dimensions of the map, the time horizon, location of depot, vehicles availatble=hicle
capacity are all properties of the entire template, and not the specific diteese are not given
as probabilities but are the same in all the instances produced by the temgiateeaton for
this is, that realistically these parameters do not change from day to day.

The number of total expected requests for a day can be defined asramlifteb]. Further-
more, probabilities for few, medium or many requests are defined. Thegeababilities of a
number being sampled in the first, second or third part of the interval,ctaaglg.

Areas: The map is split into a number of areas, that are either empty, sparsely, medium
densely populated. These will remain the same in all generated instances reglistically, a
heavily populated area almost always remain heavily populated. Eacbfdheamap is defined
as being in one of the above mentioned categories.

34

CHAPTER 5. INSTANCES

For an instance template, the probability that a customer is in a sparse, mediemserarea
is specified. Obviously empty areas will have no customers.
For each area an individual setting of constraints is defined. Thesxplaned below:

Ready Time: A constraint of ready times is defined for each area. There are fobapilities
defined; the probability that a customer has a start time at 0, in the first,dsewhthird part of
the total time horizon.

These ready times are sampled independently of customer location, arfdrhéris neces-
sary to check that the sampled ready time is no later than it is possible to seotesstbmer and
get back to the depot befoie If this is not possible, the ready time is corrected as to allow this.
For this reason, the probabilities are skewed a little, but this is done to autirgsafeasible
ready times.

Window Length: The window length of customers in the area is given by probabilities of
a customer having a very short, short, medium, long or very long time windbe.léhgth of
these time windows are defined @s9], [10; 18], [19; 35], [36; 55] and [56; 80] percent of the
total time horizon, respectively.

If a window length extends beyond the instance time horizon, the window is sicoplgff
ath. This skews the actual probabilities of customer’s window length, but was tb simplify
the instance template.

Demand: For demand, the minimum and maximumb allowed demand for a customer is
defined. Furthermore, four probabilities are given; the probability ticatséomer has a demand
of 0, a value in the first third, a value in the second third, and a value in thetthind of the
[a; b] interval.

Service Time: Like demand, this constraint defines minimum and maximum service time. It
also defines probability that a customers service time is in the first, secorttiehgart of the
interval, along with a probability that the service time of the customer is O.

Other: It should be mentioned that the customers are sampled independently.fof@ere
sampling one customer in a dense area for example, does not decreabaribe of another
customer appearing in that area. Furthermore, in the intervals defined,ahestomers are
evenly distributed. Eg. a customer who has a very short time window, wik&iged a window
length anywhere in the interval 2% - 9% at a uniform distribution.

Each of the settings described above, hasaipl e function defined, sampling the property
according to the probabilities defined. So when a customer is sampled; iritiind in which
type of density he appears, and a random area of the given type islple&eh property (ready
time, window length, etc. described above) of the request is then sampleddimg to the
settings for that specific area.

35

5.3. GENERATED BENCHMARKS

| Setting I Long I Short \
Name 600Loose | 600Tight 180Loose | 180Tight
Time Horizon (h) 600 (3 CPU-secl/timestep) 180(10 CPU-sec/timestep)
Customers 50+ 5 50+ 5
Vehicles 5 8 12 14
Window Length 2-55% 2-9% 2-55% 2-9%
(0.1/0.35/0.35/0.2/0) (1.00/0/0/0/0)|| (0.1/0.35/0.35/0.2/0) (1.00/0/0/0/0)
Ready Times (0.4/0.3/0.2) (0.4/0.3/0.2) (0.3/0.3/0.15) (0.3/0.3/0.15)
Service Time 5-25 5-25 5-15 5-15
(0.2/0.6/0.2) (0.1/0.4/0.5) (0.2/0.6/0.2) (0.2/0.3/0.5)
Demand 2-15 2-15 25-55 25-55
(0.2/0.7/0.1) (0.2/0.6/0.2) (0.3/0.6/0.1) (0.2/0.6/0.2)

Table 5.1: Properties of the Generated Benchmarks: Each benchmark has 50 customers, but when
sampling from template these range from 45-55. For digiobs within the window length,
the reader is referred to the description in section 5.2 @b&er ready timega/b/c) means
thata-100 percent of customers has their ready time in first third oftiitme horizon.b and
c denotes the second and third part of the horizon. For setwvieand demand, the interval
given is the range of values the customers can take. (@fiéc)part denotes distribution,
whereq is the fraction that has a value in the first thisdhe second third, etc..

5.3 Generated Benchmarks

The instance template framework described above, was used to createeswrhmark instances
for the Online Stochastic Algorithms. Obviously, the Solomon benchmarksctngseable for
this, since no stochastic data are available for the instances. A total didgachmark instances
have been created, and like the Solomon instances, these are attempted mady iso they
challenge different aspects of the solving heuristics.

The real life time horizon for the Online Stochastic Algorithms described in thggheould
usually be very long. For example, it could run on an eight hours worltiayg generating and
solving instances when time is available. This is not realistic when testing thethigpdue to
the enormous amount of time this would reqtirénstead a real life time horizon of 30 CPU-
minutes will be used. As an attempt to capture the properties of having a lnngéme, the
time consuming parts of the instances are also scaled down; number of cisstdis@nces,
and time horizon.

All the instances have 50 customers on a 70 by 70 grid. This means thakapately 1% of
the squares are occupied by customers, like the Solomon instances.pble@ycaf vehicles are
200. Table 5.1 sums up the properties of the 4 instances. The two templategiwiéhreorizon
of 600 were constructed to generate instances with long routes (appustdmers per route),
whereas the templates with a time horizon of 180 only allows short routes Gappstomers in
each). For each type of time horizon, one template has very tight time win@@8% (of time
horizon) and one has long time windows (2-55%). Hopefully this allows exagimow well
the algorithms performs under different circumstances.

The number of vehicles available for each instance was chosen by stiieiigstance offline,

A flawless testing of 5 settings on 5 instances would, with a time horizon of Bhtake 200 CPU-hours.

36

CHAPTER 5. INSTANCES

while minimizing the number of vehicles employed. The resulting number plus 1lgehis
made available for the online solvers.

As described in section 5.2, the map is separated into fields, in which probahilitespec-
ified for customer properties. In the generated instances, all the aagadhe same setting.
Although the templates allow different areas to have different distributiboastomer setting,
properly testing the influence of this is not feasible within the time frame of thissthes all
the areas have the same customer properties. In terms of probabilities & ari¢he map
customer appeatrs, this is specified by the density of each area. Figigieod the maps for
the templaté with a time horizon of 600 and 180. The darkest areas are dense aregism
dark are of normal density, light are sparsely populated areas, atelavbas are empty. In both
templates, customers have a 50% chance of appearing in a dense &tefay anormal area,
and 20% for a sparse. This statistically gives an average of 2.8 custperadgnse area, 0.83
per normal and 0.29 per sparse area for the 600 instances. For tirst8iCes, these numbers
are 2.27, 0.714 and 0.27. Within the density categories, the exact ardachttive customer
appear is chosen at random. The customers of the actual benchnasgtoam as dots on the
maps. Note that the customer locations for both the 600 instances are thetfsiarakso goes
for the 180 instance. Note that the instances are clustered, but with sad@nraustomers
appearing, making this somewhat similar to the RC class of the Solomon instahéeshoice
was made to challenge the algorithm in both clustered and randomly positiostedeus.

B CTIE

[~ Visualizer T I

(a) Map of instance template and bench- (b) Map of instance template and bench-
mark instance, for a time horizon of 600 mark instance, for a time horizon of 180

Figure 5.1: Maps of the Instance Templates and Generated Behmark Instances: Darkest areas are
densely populated, dark gray are of normal population, ighd jray are sparsely populated.
White areas are empty.

2A small GUI program able to display the instance template was created ftidisis. The screen shots from Figure
5.1 are of that GUI. As can be seen, it is possible to plot actual (multipt&rices on the map. Furthermore, the
GUI has the ability to display multiple routing plans on the map, distinctive by iddat colorings.

37

5.4. ONLINE INSTANCES

T T Ts
Hy | Hy H, | Hh H, H,
Class 1| 1.00| 0.50 0.50| 0.50 0.40 0.10
Class 2| 1.00| 0.50 0.50| 0.50 0.10 0.40
Class 3| 1.00| 0.50 0.50| 0.50 0.25 0.25
Class 4| 1.00| 0.50 0.50| 0.20 0.20 0.60
Class 5| 1.00| 0.10 0.90| 0.10 0.10 0.80

Table 5.2: Overview of Online ClassesClasses of distributions for visibility times of customérghe
dynamic instances.

H H H
---195 2 e?--

H H H

1)3 (c) I(c) k-
i dco) g p o dloc)

---— < J—— >4 |

P ~

£ P
Interval A= [(k—l)'j 3he]

z
X

AN

H H
Interval B= [(&1)-3: k3-1]

Figure 5.2: lllustration of Online Classes: The figure shows the possible intervals for a custoater
be visible in the intervak = 2. He becomes visible at some point in time, uniformly drawn
from the smallest of interval A and B.

5.4 Online Instances

The Solomon instances are all offline instances and so are the instanegatgd by the tem-
plate. To create online versions of them, the same approach as Van iektand Bent was
used, as described in Van Hentenryck and Bent [2006] and Bervaméientenryck [2004a].
The basic data of the offline instance, such as time windows, service time atobfois pre-
served. The instances only need to be extended in terms of assigningjldefeame to each
customer at which he becomes available (ie. visible).

First the time horizom is split into three periods of equal sizH; , H2, andHs. Furthermore,
we defineH, to represent the time before the day starts (meaning that customers beltnging
Hj are visible from the beginning of the day). Each customer is then assigroet tof three
types (1, T, or T3), according to their due time and distance to the depot. More specifically, a
vehicle has to be able to finish servicing a customer at his due time, and taakdidithe depot,
before the period is over. So a customés of typeT if and only ifi(c) 4+ p(c) + d(c, 0) € Ho,
whereo is the depot.

A customer of typ€l; is visible in Hy (beginning of the day). Typ&, customers become
visible in eitherHy or Hy, while T5 customers become visible i, H, or H,: which period
is defined by some distribution depending on the online class (see Tabl&b.2)stomers are
assigned to time perioHs.

38

CHAPTER 5. INSTANCES

To be able to test their algorithm on varying degree of dynamics, Van Hguteand Bent
created 5 classes of distributions, seen in Table 5.2. The class defieesfotypel’,, the prob-
ability of which period a customer becomes available. In an instance of Cldss é&le,

a customer of typd7 will always be visible from the start of the day. A tyfie customer will
have a probability of 10% to become visiblefag and 90% chance customers to become visible
at some point durind{;. Finally aT3 customer will become visible i#, with 10% probability,

in Hy with 10% probability or inH, with 80% probability.

Note that the later customers becomes visible the harder the instance clasoisoi that
all customers are visible at tinfés.

The time in which a customer becomes visible during some intdfyak € 1,2, 3 is drawn
uniformly from the interval:

[(k—1)- %,min()\c,k . g —1)] (5.1)

Where\. = I(c) — (d(c,0) +p(c) +d(o, ¢)) is the time it takes a vehicle to travel to customer
¢ from depoto, service him, and return to the depot. An example of this is illustrated in Figure
5.2.

39

5.4. ONLINE INSTANCES

40

6 Offline Algorithms

In the Online Stochastic Algorithms described in section 4, the stochastic VRPTapeatedly
transformed to an offline instance and solved. This is done by sampling kmewn part of
the instance, which has the effect that regular offline algorithms, madéR&®TW become
applicable. Only minor changes needs to be done in the parts of the routimdgheha are
allowed to change: this was described in Chapter 4.

In this chapter, algorithms needed for solving the offline VRPTW will be exgalon section
6.1, algorithms for constructing solutions will be described. A brief examinatfaeighbour-
hoods for the VRPTW is done in section 6.2. Finally, two meta heuristics aterexiin section
6.3 and 6.4 along with a comparison of these, which can be found in section 6.5

6.1 Construction Heuristics

Route construction heuristics are used to create an initial routing plan freeh @ unrouted
customers in an instance. On a well studied problem like the VRPTW, theleekasleveloped
many construction heuristics, amongst the best known is the savingstitebyilarke and
Wright [1964].

Although several objective functions are used in the context of this tradisone construc-
tion heuristic has been implemented. The objective of minimizing lengthgee equation (2.6),
page 8), is only used to compare when testing the efficiency of the Attribsedd4ill Climber
(see section 6.3). But preliminary runs, with the implemented constructioistieyrelded very
good results, and it was found not to be necessary to implement anotieruezion heuristic
for this purpose only.

The other two relevant objective functions are minimization of vehicles @s@timinimiza-
tion of unserved customers, with minimization of route length being a secontjgtive in
both cases. The chosen construction heuristic is a sequential method jithlds the routing
plan route by route, as opposed to constructing multiple routes simultanedim$ymeans it
fills out a route before starting the next. This is suitable for both objectiebwill be explained
in the following.

6.1.1 Impact

Braysy and Gendreau [2005a,b] presents a survey of the resgamehon non-optimal algo-
rithms for the VRPTW. In Braysy and Gendreau [2005a] route constru@nd local search
algorithms for VRPTW are examined. Here, a comparison of differenérmanstruction heuris-
tics is carried out, and while the results are not unambiguous in terms of whikh st al-
gorithm, thel npact construction algorithm of loannou et al. [2001], seems to perform well in
general.

41

6.1. CONSTRUCTION HEURISTICS

Thel npact algorithm minimizes the number of vehicles and secondly the route length. Itis
sequential, and based on the insertion heuristic of Solomon [1987]. IRiest eoute is initialized
with a seed customer. Based on some criteria, a new customer is selectedatetimto this
route. This continues until it is not possible to insert any more of the urdtautstomers into
the route. Then a new seed customer is selected to initialize a new route, sinthers are
then added to this until no more insertions are feasible. This continues urtieatistomers
have been added to a route, at which point the algorithm is done. lhntpact algorithm,
the criteria for choosing a new customer to insert and the position in whiched ihss based
on the greedy look-ahead approach of Atkinson [1994]. In the terngyodd loannou et al.
[2001], this criteria is called impact, and is an attempt to calculate the impact thiasgrdon
of a customer has on the customers yet to be assigned, while of coursgnakia length into
account. Before further specifying the calculation of the impact criter@anthin algorithm,
given in Algorithm 13, will be explained.

Algorithm 13: Impact
Data: Unrouted Customers
Result Routing plan

1 U « unrouted customers
2 while U ¢ () do

3 cseed < the customee U farthest from depot
4 p < initialize with cgeeq
5 U<u \ Cseed
6 repeat
7 best «+ oo
8 foreachwu € U do
9 feasibles — feasible positions for inserting € p
10 foreachf € feasibles do
11 imp < calculate impact of inserting at the positiorf
12 if imp < best then
13 \ best «+ impact value, customer and position
14 end
15 end
16 end
17 make insertion as given kyest
18 U« U\ best
19 until best = co
20 addp to the routing plan

21 end
22 return the routingPlan

We start with a set of unrouted customers (line 1), and continue the algauittinthe set is
empty (line 2), meaning that we have inserted all the customers in routes. Pon&sns initial-
ized with a seed customer, which is taken to be be the customer farthestranwathe depot.
After the initialization of the route, the “impact” of inserting each of the unroutestomers

42

CHAPTER 6. OFFLINE ALGORITHMS

in each of the feasible positions in the route is calculated (line 8-16), andesteobthese is
inserted into the route (line 17). When no more customers can be insertedarortent route
(resulting in line 19), it is added to the routing plan, and a new seed custoseleed to ini-

tialize a new route. The result is a feasible routing plan, in which all the cusscsne assigned.
When the objective is to minimize the number of unserved customers, it mighé patdsible to

assign all of them. In this case, the algorithm simply builds routes while vehictemsvailable,

and then returns a plan of the constructed routes and the list of unserstenners.

We still have left to look at the core of the algorithm, namely the calculation of thadbhtpe
insertion of a customer has. The main idea is to minimize the effect the insertiocust@mer
u has on the customers already in the route and the unassigned customerseepitey route
length short. Minimizing this effect, or impact, intuitively seems beneficial, allovgogd
insertions of the remaining customers. The main function is comprised of three which we
will examine, before looking at the final function.

The first part is given in equation (6.1), wherg:,,) specifies the arrival time of the vehicle
to customer,,. Recall thak(c,) was defined to be the earliest start of service for custamer

IS(cy) = a(ey) —e(ew) (6.1)

15(¢,) is an attempt to model the slack surrounding customaifter being inserted. In other
words, this equation is meant to capture how much freedom there is fotiamsef a customer
before and after,,. A non-negative value close to zero means more slack for the insertion of
customers before and aftey consequently giving more room for insertions.

The second part is somewhat related to (6.1), as it also attempts to captumgpt the
insertion of the customer has on the unrouted customers, and their future insertions. To avoid
confusion, we here stick to the terminology of loannou et al. [2001] davfithe./ to be the set of
unrouted customers. After inserting a customgra necessary condition for the vehicle to visit
some other customey is e(c,) +p(cy) +d(cu, c;) < 1(c;) V e(c;)+p(cj)+d(cj,cu) < ew).
Selecting a customer that minimizes the non-negative differen¢écof — (e(c,) + d(cu, ¢;) +
plew))]or[l(cy) — (e(cj) +d(cj, cu) +p(cu))] forall ¢; € J, is expected to be a good selection.
Which of these is positive obviously depends on the ordef ahdc,. This leads to the criteria:

Z max (l(cj) —e(cy) — d(cj, cu) — pley), ley) —e(ey) — d(cy, ¢5) — p(cj))

TUlen) = (17— 1)

c;€J—cu

(6.2)
The last criteria is called internal impact, and considers the effect thdiorsef customer
¢, has on the route, when inserting it between custamandc;. This criteria is comprised of

'Here, and in equation (6.2), the implementation of this thesis differs framathloannou et al. [2001]. In their
article, they write:
A necessary condition for a vehicle to visit customjeafter the selected for insertion customeis
(assuming feasibility)e, + du; < 1\ €5 + dju < 1y
. In this formula they do not take the service time of the customer into caasidle. The same is the case
from their variant of the IU (equation (6.2)). Although they write “assngnfeasibility”, which ensures their
statement is not incorrect, it seems to make more sense to also considenifte time in the expression and in
the calculation of 1U as well.

43

6.1. CONSTRUCTION HEURISTICS

three parts. The first simply calculates the increase in route length:

iri(cy, ¢i, ¢j) = d(ci, cu) + d(cy, ¢5) — d(ci, ¢j) (6.3)

The next part calculates the difference in arrival time at custgrbefore and after the inser-
tion of u — that is, the delay of arrival gt This is done by:

ira(cu, ciy ¢j) = [l(eg) = (aleq) +plei) +d(ci ¢5))] = 1) = (alew) +p(cu) +d(cu; ¢5))] (6.4)

The final part of the third criteria models the time gap between the latest sém&gc,) of
customern: and the arrival time of the vehicle. This can be calculated as:

ir3(cu, ci, ¢j) = l(cu) — (ale;) + ple) + d(ei, cu)) (6.5)

Putting all these together, weighted, we get an expression of whatdoaatral. [2001] calls
local disturbance This has to be calculated for all feasible insertions ahd can be described
by the equation:

[R(cy) = Z biiri(cy, ¢i, ¢j) + baira(cy, ¢i, ¢5) + bairs(cy, ¢, ¢;) (6.6)
(ci,ci)€lr ‘IT’
Whereb; + by + b3 = 1, by, by, b3 > 0, and, is the set of all feasible insertion points of
customere,,.
Putting all this together, gives us a formula for calculating the impact of ingeatcustomer
u into a routing plan:

Impact(cy) = bsIS(cy) + beIU(cy) + brIR(cy) (6.7)

Wherebs + b, + b, = 1, andbs, b, b, > 0.

The only thing left to discuss is the weighis, bo, b3, bs, b, andb,.. A thorough testing of
these in loannou et al. [2001], shows that the changes to the pararmetarequation (6.6)
shows statistically insignificant differences. It has therefore beeidel@to let these contribute
equally, settingh; = by = by = é The best setting of the other three parameters from (6.6)
were not as unambiguous, and depended on the size of time windowsolpanal. [2001] did
the parameter tuning on the Solomon instances, and the only inference thabthié make,
was that for instances with small time windotysshould be set greater thanandb. to achieve
good results.

Tuning of Parameters

In the context of this thesis, the construction heuristic might often run onlsdnstances in
which it is impossible to serve all customers. The parameters were tuned fioniggtion of
used vehicles. To examine whether a parameter setting was suitable, dadfstaiioth cases,
ie. sufficient and insufficient vehicles available, a race was setupvdlbes tested are given in
Table 6.1. The values given in each line, are tested in all combinations ametars. So for the

44

CHAPTER 6. OFFLINE ALGORITHMS

a b c
0.00| 0.00| 1.00
0.10| 0.10| 0.80
0.20| 0.20| 0.60
0.30| 0.30| 0.40
0.40| 0.40| 0.20
0.33| 0.33] 0.33
0.50| 0.35] 0.15

Table 6.1: Parameter Values for Testing the Impact Heuristt: For each line, except the last two, three
parameters settings are tested. For the varialed,, b.) the settings:(a, b, ¢), (¢, a,b),
(b,c,a) are used. In the second to last row, parameters are equdijsssetting is tested
directly. For the last row, all combinations of the threeues are tested with the given values.

first line, for example, the settings.(= 0,bs = 0,b. = 1), (b, = 1,bs = 0,b, = 0) and b, =

1,bs = 0, b, = 0) are tested. The parameters was tested on the Solomon benchmarksufe cap
the challenge of minimizing the unassigned customers, a run of the Attributd Bidsk€limber
(described in section 6.3) was done on the instance, with the objective to minthreinember

of vehicles employed. The resulting vehicles found, were set as the mawhiéable for the
instance. This resulted in a set of instances, in which a preliminary testing mitact showed

it was able to assign all the customers in around half of the instances.yHemplact s ability

to solve both instances where an sufficient and insufficient amounhaflegs are available were
tested.

The race was done via thrace package for the R statistics prograniThe race was done
unreplicated, meaning one run per setting on each instance. For eliminagdfri¢gdman test
was used with a 95% confidence interval. The output of the race camubéd fio Appendix B.1.

The only parameter setting that could be eliminated was the ones from thevirsf iTable
6.1, in which two of the parameters had no weight, ie. influence on solutiorer @than that,
no significant difference was found in the quality of the solutions, andealtbice was based
on the conclusion of loannou et al., that having an increased valtig wés desirable. The
parameters for nmpact is seth, = 0.40, b, = 0.30, andb. = 0.30 for use in this thesis.

6.1.2 Ejection Chains

Although thel npact algorithm performed well, in comparison to the other construction heuris-
tics examined in Braysy and Gendreau [2005a], an average of afoumstomers were not as-
signed to routes (according to the race described above). To furthenienjhe starting solution,
the use of Ejection Chains were examined.

The idea of Ejection Chains is to fit the unrouted customers into the plan, tiyngouasly
exchanging them with routed customers until room becomes available fosentidm.

More specifically, the Ejection Chain algorithm selects an unrouted customemd attempts

2The R-Project: http://www.r-project.org/

45

6.1. CONSTRUCTION HEURISTICS

Instance Impact Ej.Chain Instance Impact Ej.Chain

u length| u length u length| u length
Cc101 7 1245.39| 6 1303.47| R112 19 1574.12] 1 1402.74
C102 1 2073.18] 1 1990.56| R201 0 2490.93] 0 2490.93
C103 1 2536.32| 0 2299.31|| R202 0 2147.67) 0 2147.67
C104 0 1978.38 0 1978.38|| R203 0 2105.30, 0 2105.30
C105 10 177493 7 1701.27| R204 0 1864.73] 0 1864.73
C106 13 2153.74/ 5 1903.67| R205 0 2295.75| 0 2295.75
c107 6 1878.72| 3 1901.96| R206 0 233461 0 2334.61
C108 9 2423.92| 3 1714.50|| R207 7 2054.32] 0 1937.67
C109 2 1923.78/ 0 1936.40| R208 0 1912.13) 0 1912.13
C201 0 1297.03| 0 1297.03| R209 0 2506.80, 0 2506.80
C202 11 1971.08 4 1381.11|| R210 0 2667.28/ 0 2667.28
C203 0 2259.68/ 0 2259.68| R211 0 2385.57] 0 2385.57
C204 12 2017.02) 6 1557.39|| RC101 4 2079.34) 3 2056.83
C205 3 1088.45 1 1013.79|| RC102 2 2031.08] 1 2055.36
C206 7 1551.94| 0 945.44| RC103 9 1820.69] 3 1727.08
Cc207 8 1706.94| 1 1164.46] RC104 | 34 1679.41] 10 1430.22
C208 3 1195.44| 2 1169.78|| RC105 | 11 2232.00f 3 1999.04
R101 1 2004.22| 1 1959.64| RC106 7 1872.85| 2 1732.95
R102 1 1967.22| 1 1946.28| RC107 | 17 1835.44] 5 1651.51
R103 0 1797.63| 0 1797.63|| RC108 | 24 1762.99] 4 1566.82
R104 19 1612.33) 4 1456.85|| RC201 0 2498.03] 0 2498.03
R105 6 1853.62| 0 1734.82|| RC202 0 2478.15] 0 2478.15
R106 4 1882.32| 1 1800.63| RC203 0 2554.39] 0 2554.39
R107 17 1594.06| 4 1441.31|| RC204 0 2345.47, 0 2345.47
R108 22 1478.28| 8 1327.77|| RC205 0 2750.94) 0 2750.94
R109 5 1772.27) 2 1670.24| RC206 1 2597.89] 0 2608.50
R110 11 1679.07| 5 1533.38| RC207 0 3077.34) 0 3077.34
R111 17 1582.34/ 5 1445.10| RC208 2 2755.04] 0 2685.74

Table 6.2: Comparison of Running Impact With and Without Ejection Chains: The instances used
are Solomon instances with limited vehicles. In the heagimgndicates number of unserved
customersjengthis route length. For each instance, the left column, naimgzictis the
impact algorithm with no ejection chain, wherdgsChain. are a run of impact followed by
the ejection chain algorithm.

to insert this into the routing plan in a best fit manner - the best insertion idegldtinsertion

is possible, the customer is inserted and a new choice of unrouted customadés If no
insertion is possible, the algorithm searches for a routed custeménat it can eject from a
route and replace with,. The replacement yielding the best objective function is chosen. The
customere; is now unrouted, and a new iteration starts. Fiestis attempted inserted, and if
this is not possible, the algorithm searches for a customer to replace.(&jeet)y these chains

of ejections will make room for the insertion of the unrouted customers. [Hoeitom finishes

46

CHAPTER 6. OFFLINE ALGORITHMS

when no more insertions or injections are possible.

A problem with the algorithm, is that the ejection chain might enter a loop, ejectirngathe
chain of customers. This can be remedied by a tabu list that dictates whichmzus are not
allowed to be ejected. When a customer is inserted into the route, this shouldidée @ the
tabu list.

A comparison of runs of Impact only, and Impact followed by an Ejectioai€s given in
Table 6.2. Looking at the table, it is clear that the Ejection Chain heuristic irepritve solution
significantly. For almost all routing plans where unserved customersesent, the algorithm
improves the plan.

6.2 Neighbourhoods

Like previously mentioned, for a well studied problem like VRP, a great arhofialgorithms
have been created. This is also true for neighbourhoods in the VR Wihéook at the VRP
with time windows, the amount is limited somewhat, because the time windows do notaallow
part of a route to be reversed in terms of the ordering of the customess ésample of one such
neighbourhood, Figure 6.1 shows theopt exchange oper at or [Braysy and Gendreau,
2005a]. On the right figure, the dotted route has been reversed dueneitthbourhood move.
This means that customers like- 1, i + 2, etc, that used to appear early in route (and therefore
are likely to have early time windows) will suddenly appear late in the route.ilpistentially
conflicting with their time windows. Obviously the same problem arises with cusgmer-1,

etc, who are likely to have late time windows. After the move, these appeariedhlg route,
which might conflicted with their time windows.

Besides the comparison of construction heuristics, Braysy and Genf@@@5a] contains a
summary of popular neighbourhoods for the VRPTW. From these, twah@sen to be imple-
mented in this thesis, namely thel ocat e andexchange neighbourhood. One reason for
this choice was the simplicity of these neighbourhoods. The focus of this ikas the online
stochastic algorithms, so two simple neighbourhoods seemed suitable. Irxthemsections,
these will be described in detail.

Figure 6.1: Example of Potentially Bad Neighbourhood When Uisig Time Windows: Figure show-
ing the2- opt exchange oper at or. In the right figure, the direction of the route be-
tweeni andj — 1 have been reversed (dotted line). This means that custdhsrappeared
early in the route before neighbourhood move, will now appei® and vice versa. This is
potentially conflicting with time windows.

47

6.2. NEIGHBOURHOODS

6.2.1 Relocate

The principle of the el ocat e operator is to remove one customer from a route and inserting it
somewhere else, either in the same route, or in some other route. The mopieisdlian Figure

6.2. As can be seen, the way to move custoifierm one position to another is to remove edges
(i —1,4), (i,i + 1) and(j, j + 1) and inserting the edgés — 1,7 + 1), (j,4) and (i, j + 1).

As is the case of all neighbourhood moves in the VRPTW, ocat e suffers under the
stricter ordering on customers due to time windows. But there is a major differleetween
the impact of this ordering on th2- opt exchange oper at or, described above, and
rel ocate. Inrel ocat e all customers on the relevant routes, not countingill only be
affected by a shift in the time due to the removal or insertion.ofThis shift, of course, is
not irrelevant, and it is necessary to check if the time windows of the cussoamerviolated.
This is notably different than th2- opt exchange oper at or neighbourhood in which
entire parts of the route is reversed, causing great change in visiting timak the customers
involved, and hence making most neighbourhood moves infeasible.

When using the objective function given in equation (2.9), where only a lirmtedber of
vehicles are available, we have a pool of unserved customers. Thied&eHan a straightfor-
ward way in the relocate neighbourhood. A relocate involving the undggeel happens in
two scenarios. A customer can be removed from a route, and insertedermoahof unserved
customers. Unlike a relocate involving two routes, there is no need to checkvimdews in
this case, since the unrouted customer are not served at all, and tbexefdy definition not
served in their time windows in any case. The other scenario, is taking anwerstiom the set
of unserved customers and inserting it into a route. In this case, the timewsgnafocourse
needs to be checked.

i-1 j+1
L L
j
] .

d+l b ﬁ'+ \‘I

(a) Rel ocat e where customet is inserted into the same
route from which it is removed

j-1

j+1 I:b I%T:I .
./'+1 b]

(b) Rel ocat e involving multiple tours. Heré is removed
from one route and inserted into another.

Figure 6.2: Figure of the Relocate Neighbourhood MoveShows the relocate neighbourhood involving
a single or multiple routes.

48

CHAPTER 6. OFFLINE ALGORITHMS

6.2.2 Exchange

The second implemented neighbourhood is caigdhange, and as the name suggests, the
basic principle is to take two customers and exchange them. This is depictedune Bi§, in
which customers and; are exchanged. This is done by replacing the edgesl, 1), (i, +
1),(j —1,7)and(j,j + 1) with (: — 1,7), (4,i + 1), (j — 1,7) and(z,j + 1).

The exchange neighbourhood might not intuitively seem very usalblen ge strict ordering
VRPTW has. When having chosen a customéhe selection ofj is very limited, since the
timespan betweep— 1 andj + 1 has to match the time window ¢fand furthermore allow's
service timep(i). In the same way, the timespan betwéen 1 andi + 1 has to allow for the
service time ofj and fitj's time window. In this way, the size of this neighbourhood is limited
greatly by the time windows.

Unlike the case of el ocat e, the size [cust(p)|) of the routes will also remain the same
despite the number of exchanges done. This greatly decreases the ofisdations reachable
by the sole use agxchange. On the other haneixchange allows for some moves that might
not be possible using the relocate neighbourhood exclusively. Trerefsing two neighbour-
hoods in conjunction might allow for some good solutions, whereas an exclise of exchange
is not expected to be able to reach very good solutions, since the humbastofers in the
routes will remain the same, as will the number of unserviced customers.

As withr el ocat e, the set of unserved customers needs to be taken into account whgn usin
the objective (2.9), page 9. Likeel ocat e, this is handled by treating the unserved set as a
route, and simply allowing exchanges between a route and the unsetvétisenly difference
is that the time windows do not have to be checked in the unserved set, saseesd@impled
customers are obviously not being served at all.

(a) Exchange where customerand; from the same route
are exchanged. Note thiaghould be precedingjin the route.

(b) Exchange involving multiple tours. Heré andj, each
from a different route, are exchanged.

Figure 6.3: Figure of the Exchange Neighbourhood MoveFigures showing the exchange neighbour-
hood for a single and multiple routes. Customeasid;j are exchanged, resulting irbeing
served between — 1 andj + 1 and;j being served between- 1 andi + 1.

49

6.3. THE ATTRIBUTE BASED HILL CLIMBER (ABHC)

Algorithm 14: Basic ABHC algorithm for VRP
Data: Routing Plany
Result Routing Plany,

197
2% =7
3 while ~;, # null do

4 | denti fyWbrst Attri butes(~)
5 ¥ < null (setw() to o)

6 foreach~; € N(y) do

7 if Ww(y) <wW() AAccept (,7) then
8 ‘ Vo Ve

9 end

10 end

11 if v, # null then

12 T

13 Updat eAttri but es()

14 if v, <. then

15 | =

16 end

17 end

18 end

6.3 The Attribute Based Hill Climber (ABHC)

The Attribute Based Hill Climber algorithm (ABHC), is a relatively new algorithimstfintro-

duced by Whittley and Smith [2004]. They applied it to the Quadratic Assignfgestilem

and Travelling Salesman Problem, for which it was shown to be competitive wigtirg algo-

rithms. In 2006, Derigs and Kaiser applied the heuristic to the vehicle routiigem, described
in Derigs and Kaiser [2007]. Here it was shown to be competitive with thiekinesvn heuristics
for VRP. This has been further supported by the masters thesis of Niolg609], in which
it was applied to the Site Dependent VRP with Time Windows (SDVRPTW) andedelgry

good results.

6.3.1 The ABHC Algorithm

The ABHC heuristic is a parameter free algorithm, based on principles faima $earch. In
short, for a given type of problem, a set of atomic attributes (ie. edges)R chosen, for
which the objective value of the best solution they have been a part cdoesiased. The algo-
rithm searches through all the neighbouring solutions, picking the one vetlowest objective
function. A neighbouring move is acceptable if the new objective value inggsrown one or
more of the attributes that comprise the new solution (ie. routing plan). Thitgaoes until no

more acceptable moves are possible, in which case the best solution faimgl execution is

50

CHAPTER 6. OFFLINE ALGORITHMS

returned. Initially all the attributes are initialized with the worst possible valuextiéor mini-
mization problems like VRP), except of course the attributes of the startingasglwhich are
initialized with the value of the objective function. In VRP this would be all theesdgetween
adjecent customers in the routing plan. The algorithm is outlined in Algorithm 14.

To avoid looking through all the attributes, to see if a move improves on onewof,th short
list of the worst attributes of the current solution is maintained by thent i f yWor st Attri but es
function. When checking whether to accept a new moveatheept function compares the
new objective function value with the list of worst attributes, and if it impravest least one of
the attributes, which is still in the solution after the neighbourhood move, the imaweepted.
In the loop (line 6-10), the entire neighbourhabdis examined for acceptable moves, keeping
track of the best one found. After the neighbourhood is exhaustiegched, the best move
is made (line 12), and the attributes comprising this new solution are updatediaccto the
objective value via thepdat eAt t ri but es function.

The ABHC overcomes the problems of escaping local minima by allowing winigeyo-
lutions as long is at least one of its attributes improves. This allows it to expleredéarch
landscape very extensively, while still favoring better solutions, due t@B#st Fit nature of
the algorithm. Every time the algorithm moves in search space, at least quertygr@read at-
tribute) of the algorithm will measurably improve. This requirement for a striprovement in
every iteration ensures that the algorithm will terminate at some point, aneéfortine that the
algorithm will not visit the same solution twice.

The ABHC algorithm was chosen because it was shown to be very gdodiigiy solutions
for VRP, parameter free and relatively simple to implement. Due to the attributeigdenthe
algorithm seems to be efficient at escaping from local minima, which is amtat@ when
having clustered instances, in which there are farther between, apdrdeeal minima, than in
a search landscape of a non-clustered instance.

Unlike other well known algorithms, like Simulated Annealing, Tabu Search, ettere
tuning is required to find the best setting for a specific type of problem tannos, the ABHC
is parameter free. Thus as soon as one has defined the attributes thdtishased for the
given problem type, ABHC is applicable without tuning. While this is a very piacgerty in
most cases, it also means that one cannot tune the speed of the algoritlare &\low initial
temperature would make the Simulated Annealing algorithm finish quicker, tieABKC has
no parameters that can be set in a way to have the algorithm end faster.

Although no tuning is required, a few design choices still have to be made wigementing
the algorithm. First of all, it has to be decided what property of the probleméas attributes.
Whittley and Smith [2004] used the arcs or edges between customers asedtvibien applying
ABHC to TSP. In Derigs and Kaiser [2007], experimentation with other @riigs as attributes
for the VRP was done, but it was concluded that using arcs or edddsgithe best results. In
terms of neighbourhood, relocate was chosen, and this is also suppgrizetigs and Kaiser
[2007] that showed the neighbourhood to be efficient for ABHC.

Comparison of the Offline ABHC to Solomon Benchmarks

To be able to examine the efficiency of the ABHC on VRPTW one can compéaneréisults
found by other algorithms on known instances. For this, the Solomon instarere used (see

51

6.3. THE ATTRIBUTE BASED HILL CLIMBER (ABHC)

Section 5.1), as these are widely used to test VRPTW algorithms and are ivetéems of time
windows and customer positioning.

For the comparison, thenpact algorithm was used for constructing the routes. No further
improvement of the solutions done, other than the ABHC described in Algofithm

As described in section 5.1 optimal solutions exist for many of the instaneeg tight upper
and lower bounds have been found for many of the remaining, and tiewesults have been
obtained for all the instances. In terms of optimal solutions and bounds theenest solutions
that could be found were reported in April 2008 by Jepsen et al. [2008

In the context of this thesis, algorithms finding optimal solutions are considefeasible,
due to the time required for finding solutions. To be able to compare the implersgtedhm
with alternatives the results of ABHC are also compared to the best solubiong by heuristics.
The objective in the reported results is minimization of route length. Despite sidevable
effort to find more recent reported results, the most recent resultsfiddrby heuristics that
could be found are from the website of Solomon [2005], last updatedhv2005.

In Table 6.3, the results of the ABHC are reported along with the optimal andstie so-
lutions. For the instances where only bounds, rather than optimal solutvens,found, these
are reported. In the two rightmost columns of the table, the percent-wiseediffe in solution
quality of ABHC compared to the optimal and heuristic solution are reportedo kptimal
solutions were available, but bounds were reported, the differenedciglated to the mean of
the bounds.

As can be seen in the table, the algorithm is definitely competitive with the cureenistic
methods. In most cases, ABHC improves on the solutions previously repartd in 9 cases, it
improves on the best solution obtained by considerable amounts (up to 13.71%

Compared to the optimal solutions, the ABHC is within 5% of the optimal value. Tin@mg
times for the optimal algorithms are normalized to a P4 3.0 GHz machine. The ruimafpr
ABHC is reported for a Intel Core2 6300 (1.86GHz) machine. As carebr,sn many cases for
instances of type 1 (see section 5.1, page 33), the running times of optioté@se are actually
shorter than those of ABHC. Whether this is due to machine power or algosipleed has not
been possible to assess.

6.3.2 ABHC for the Consensus Algorithm and Speed-up Consider ations

In terms of using the ABHC for the purpose of this thesis, a few furthesidenations are nec-
essary. Unlike Derigs and Kaiser [2007], the objective in the versidfRH considered here, is
to maximize the number of customers served, having a fixed number of veticlassecondary
objective is the minimization of the route length. This means that a valid solution atsd@on-
tain a number of unassigned customers, and relocation of customers fordnbe between a
route and the list of unassigned customer. This increases the size ofdhba@hood by some
amount, but more importantly means besides having arcs as attributes, aneatthibuld also
be associated with a customer being unassigned.

When using ABHC as a sub-procedure in the Consensus Algorithm, thétlafgavill be run
on routing plans that are partly fixated, due to parts of the customers Hesag\avisited. The
effect of this on ABHC is simply that the size of neighbourhood for a giselution will be
decreased, due to less customers being movable. In other words, dler grarts of the routing

52

CHAPTER 6. OFFLINE ALGORITHMS

Instance ABHC Optimal Heuristics || Opt. dev. | Heur. dev.

Distance Time (s) Distance Time (s)] Distance (%) (%)
R101 1685.34 39.21| [1634.0; 1637.7] 1.87| 1645.79 3.03 2.40
R102 1484.81 135.35 1466.6 4.39 1486.12 1.24 -0.09
R103 1233.93 238.19 1208.7 23.85 1292.68 2.09 -4.54
R104 1008.15 244.32| [971.3;971.5] 23343.92 1007.24 3.78 0.09
R105 1405.34 70.59| [1355.2; 1355.3] 43.12 1377.11 3.70 2.05
R106 1267.67 187.38 1234.6 75.42 1251.98 2.68 1.25
R107 1081.12 172.27| [1064.3; 1064.6] 1310.3 1104.66 1.57 -2.13
R108 958.12 189.87 932.1 5911.74 960.88 2.79 -0.29
R109 1162.26 123.72| [1144.1;1146.9] 143241 1194.73 1.46 -2.72
R110 1083.68 167.59 1068.0 1068.31 1118.59 1.47 -3.12
R111 1081.14 207.67| [1045.9; 1048.7] 83931.48 1096.72 3.23 -1.42
R112 974.83 184.37| [946.7; 948.6] 202803.94 982.14 2.87 -0.74
C101 828.94 9.18 827.3 3.02 828.94 0.20 0.00
C102 828.94 114.09 827.3 12.91 828.94 0.20 0.00
C103 828.07 335.32 826.3 33.89 828.06 0.21 0.00
C104 848.53 535.86 822.9 4113.09 824.78 3.11 2.88
C105 828.94 14.01 827.3 5.34 828.94 0.20 0.00
C106 828.94 72.55 827.3 7.15 828.94 0.20 0.00
C107 828.94 94.14 827.3 6.55 828.94 0.20 0.00
C108 828.94 195.91 827.3 14.46 828.94 0.20 0.00
C109 828.94 335.16 827.3 20.53 828.94 0.20 0.00
RC101 1699.77 42.03 1619.8 12.39 1696.94 4.94 0.17
RC102 1503.03 85.64 1457.4 76.69 1554.75 3.13 -3.33
RC103 1288.09 112.51| [1257.7; 1258.0] 2705.78 1261.67 2.40 2.09
RC104 1165.77 195.08| [1129.9;1132.3] 65806.79 1135.48 3.07 2.67
RC105 1550.88 56.54 1513.7 26.73 1629.44 2.46 -4.82
RC106 1400.72 89.01| [1367.3;1372.7] 15891.58 1424.73 2.24 -1.69
RC107 1261.56 105.53 1207.8 153.8 1230.48 4.45 2.53
RC108 1160.91 141.24 1114.2 3365.0 1139.82 4.19 1.85
R201 1187.28 224.7 1143.2 139.03 1252.37 3.86 -5.20
R202 1059.45 551.07| [1027.3;1029.6] 8282.38 1191.7 3.01 -11.10
R203 891.67 816.59 870.8 54187.4 939.54 2.40 -5.10
R204 756.37 1413.86 - - 825.52 - -8.38
R205 969.75 425.53 - - 994.42 - -2.48
R206 914.11 719.14 - - 906.14 - 0.88
R207 837.43 845.61 - - 893.33 - -6.26
R208 720.97 1317.33 - - 726.75 - -0.80
R209 883.53 563.65 854.8 78560.47| 909.16 3.36 -2.82
R210 923.01 694.38 - - 939.34 - -1.74
R211 770.36 691.51 — — 892.71 — -13.71
C201 591.56 79.22 589.1 203.34 591.56 0.42 0.00
C202 591.56 353.1 589.1 3483.15 591.56 0.42 0.00
C203 591.17 620.55 588.7 13070.71] 591.17 0.42 0.00
C204 590.6 1077.7 - - 590.6 - 0.00
C205 588.88 227.04 586.4 416.56 588.88 0.42 0.00
C206 588.49 335.15 586.0 594.92 588.49 0.42 0.00
C207 588.29 344.23 585.8 1240.97 588.29 0.43 0.00
C208 588.32 453.97 585.8 555.27 588.32 0.43 0.00
RC201 1287.89 260.9| [1261.7;1261.8] 229.27 1406.91 2.07 -8.46
RC202 1109.0 499.1 1092.3 312.57 1367.09 1.53 -18.88
RC203 953.24 655.93 923.7 14917.36) 1049.62 3.20 -9.18
RC204 792.84 940.62 - - 798.41 - -0.70
RC205 1189.75 388.81 1154.0 221.24 1297.19 3.10 -8.28
RC206 1101.64 408.05 1051.1 339.69 1146.32 4.81 -3.90
RC207 972.21 586.16 - - 1061.14 - -8.38
RC208 787.33 760.68 - - 828.14 - -4.93

Table 6.3: Comparison of the ABHC, Optimal and Heuristic Soltions Found on the Solomon
Benchmarks: The time unit is CPU-time in seconds. The results for optis@utions
and bounds are taken from Jepsen et al. [2008], published 2¢8. The heuristic solu-
tion values were taken from Solomon [2005], last updateccla005. The data was copied
from the website April 20th, 2008. The rightmost columnscsfyepercent-wise difference to
optimal and heuristic solutions. If only bounds were addéarather than optimal solutions,
the difference was taken to the mean of the bounds. In thdtsegported, the objective is
minimization of distance.

53

6.3. THE ATTRIBUTE BASED HILL CLIMBER (ABHC)

plan that is fixated (ie. later on the day), the faster the ABHC generally &stalthe limited
neighbourhood.

For the Online Stochastic Algorithms presented in section 4, the offline algoistbmly al-
lowed to run for a limited amount of time, and therefore a mechanism for stogipéregjgorithm
is necessary. The implementation of this is very simple: when the algorithm id tiote it
returns the current best solution.f found.

A potential problem with the ABHC, in terms of the Online Stochastic Algorithms, isitha
might be too slow. During the run of the Consensus algorithm, a considenaiolent of instance
will have to be solved, and therefore a reasonably fast algorithm wié labe used. Although
no parameters can be tuned for the basic ABHC to speed it up, thereewechdnges that can
be made to the algorithm, to attempt to make it faster. These changes will béddsarthe
next three sections.

6.3.3 Improving Initial Solution Quality

The quality of the initial solution might have an effect on the efficiency of tgerthm. Derigs
and Kaiser [2007] examine this, and concludes that ABHC seems robtestiis of solution
quality regardless of the quality of the initial routing plan, but starting froracgblution takes
significantly more CPU-time/iteration than when a good construction heuristieds us

As described above, the Impact algorithm followed by an Ejection Chairritdgoyielded
very good results. But another option for attempting to create even betténgtsolutions, is
to follow this by a run of a Best Fit local search. This was implemented usingetbeation
neighbourhood. The results are reported in Table 6.4. There is noag@agtern, except that if
one setting finds better results than the other, the time taken to do this is usuasiedralso.
Although Derigs and Kaiser [2007] concludes that starting from a bettatisn saves signifi-
cant amounts of CPU-time, this is when comparing a randomly generated satutiann of a
construction heuristic. The solution found by the Impact heuristic followeahEjection Chain
is very good and so it does not make a significant difference in running #hneexplanation
for the variations in solution quality could be that the ABHC start from diffiéslutions, and
therefore does not necessarily visit the same parts of the search 3pecdecision was taken
not to use a local search before running the ABHC algorithm.

6.3.4 ABHC with First Fit

Another option, also implemented by Nikolajsen [2009], is to change the algotidhun by a
First Fit principle. Rather than searching the entire neighbourhood migaation and taking
the best acceptable improvement, one could do a move in the neighbouthsodreas a move
improving the best solution is found. This does not guarantee that thetafgdrecomes faster,
since using first fit makes it move slower towards local minima. On the othet, hageneral
the algorithm will search a smaller part of the neighbourhood, which is stantial increase in
speed for each iteration. In summary, using first fit means an increggeed $or each iteration,
but at the cost of a less steep movement towards local minima. The algorithuired in
Algorithm 15. It is essentially the same as the regular ABHC except thattértests search
every time a solution is found that improves on the overall best.

54

CHAPTER 6. OFFLINE ALGORITHMS

Construction Constr. and LS

Instance constr. ABHC cpu(s) constr. ABHC cpu(s)

u length | u length (s) u length | u length (s)
R101 1 19596| 0 1661.2 126 || 0 1753.4| 0 1661.2 12.0
R102 1 1946.3| 0 1507.0 56.7 || 0O 1588.8| 0 1488.3 78.3
R103 0 17976| 0 1250.6| 1223 | O 1368.4| 0O 1249.3| 126.3
R104 4 1456.8| 0 993.3 97.3 | 2 11461 0 993.3 96.2
R105 0 17348 0 14154 19.8 || 0 1533.3| 0 1405.1 18.9
R106 1 1800.6| 0 13205 574 || 1 1461.0| 0 1279.0 70.1
R107 4 1441.3| 0 1095.0 56.6 || 3 1252.0| 0 1095.0 56.3
R108 8 13278| 0 949.5 833 2 1057.0| O 949.5 82.3
R109 2 1670.2| 0 1165.0 58.2 || 2 1460.2| 0 1165.0 58.0
R110 5 15334| 0 1076.2 788 || 3 13936| 0 1076.2 78.6
R111 5 1445.1| O 1131.0 93.4 5 12702| 0 1131.0 92.8
R112 1 1402.7| 0 982.0 98.2 1 11985| 0 982.0 97.8
R201 0 24909| 0 1235.1| 116.7| O 1382.8| O 1192.9| 108.6
R202 0 2147.7| 0 1110.8| 2905 0 1383.0] 0O 1110.8| 290.3
R203 0 21053| 0 909.1| 534.1|| 0 1269.1| 0 909.1| 537.2
R204 0 1864.7| 0 755.6| 895.0|| O 968.8| 0 755.6 | 891.2
R205 0 2295.7| 0 996.8| 250.7|| 0O 11711| 0 996.8| 273.5
R206 0 23346| 0 894.3| 628.2|| 0 11595| 0 894.3 | 585.0
R207 0 1937.7| 0 815.0| 779.8|| 0 960.6 | O 812.8| 784.2
R208 0 19121| 0 707.7| 8985 | O 8855 | 0 707.7 | 895.2
R209 0 2506.8| 0 864.1| 3538 0 10419| 0 864.1| 350.4
R210 0 2667.3| 0 932.8| 41551 0 11506| O 932.8 | 412.2
R211 0 23856| 0 763.9| 592.7|| 0 9335| 0 763.9 | 593.0
C101 6 13035| 5 11153 33| 5 1221.8| 5 11153 2.5
C102 1 19906 O 995.0 2851 1 16399 0 995.0 28.5
C103 0 22993| 0 859.4| 148.6|| 0O 1496.1| 0 859.4 | 147.2
C104 0 1978.4| 0 824.8| 363.5|| 0 13376 0 824.8| 362.9
C105 7 1701.3| 3 1253.8 109 7 16406| 5 13419 9.2
C106 5 1903.7| 0 893.1 152 || 5 17984 0 893.1 154
C107 3 1902.0| O 969.0 182 || 3 16794 | 0 969.0 18.2
C108 3 17145| 0 1051.6 28.1 | 3 1561.1| 0O 1051.6 28.2
C109 0 19364 0 828.9| 13161 0O 1813.1| 0 828.9 | 132.1
C201 0 1297.0| O 591.6 442 || O 860.6 | O 629.7 30.6
C202 4 1381.1| O 985.6 148 || 4 13365| 0 985.6 14.8
C203 0 22597 0 620.3| 3725 0 13984 | 0 620.3 | 3715
C204 6 1557.4| 0 590.6 | 520.7 || 2 11334| 0 590.6 | 513.7
C205 1 10138 1 770.9 125 | 1 9649 | 1 766.6 12.8
C206 0 9454 | 0 672.1 2191 0 9039 | 0 672.1 22.1
Cc207 1 11645| 0 588.3 524 | 1 1038.6| 0 588.3 52.4
C208 2 11698 0 678.5 46.5 (| 0 10029| O 678.5 42.8
RC101 3 2056.8| 0 1700.3 13.3 || 3 18558 0 1700.3 12.3
RC102 1 2055.4| 0 1478.0 342 | 0 1911.7| 0 1478.0 36.0
RC103 3 17271 0 13211 63.7 || 2 13455| 0 1321.1 66.2
RC104 10 1430.2| 0 1158.5 923 || 7 1332.2| 0 11585 91.7
RC105 3 1999.0| 0 1644.3 106 || 2 1843.7| 0O 1644.3 10.6
RC106 2 17329| 0 1430.6 264 || O 1499.6| 0 1437.7 19.8
RC107 5 1651.5| 0 1321.0 35.0|| 3 1408.2| 0 1307.3 50.3
RC108 4 1566.8| 0 1151.9 498 || 3 14452 | 0 11519 49.6
RC201 0 2498.0| 0 1369.8 948 || 0 16875 0 1369.8 98.5
RC202 0 2478.1| 0 1234.2| 234.2|| 0 1511.4| 0 1241.6| 223.1
RC203 0 25544| 0 1003.8| 393.2| 0 12199| 0 1003.8| 394.7
RC204 0 23455| 0 804.2| 716.9|| 0O 1063.7| 0 804.2| 712.3
RC205 0 27509| 0 1260.6| 220.1| O 1504.8| 0O 1260.6| 222.4
RC206 0 26085| 0 1125.2| 180.9| O 1420.3| 0 1111.0| 174.0
RC207 0 30773 0 970.8 | 494.71|| 0 1301.3| O 970.8 | 481.1
RC208 0 2685.7| 0 793.2| 456.8 | 0 1038.3| 0 793.2| 455.1

Table 6.4: Comparison of the ABHC Run With Different Quality of Starting Solutions: ABHC
normalis run with the Impact construction algorithm onl§BHC improvedhas the Impact
solution improved by a Best Fit local search with the releaagighbourhood. The time unit
is CPU-time in seconds. For ABHC columns, the time given &ttbtal running time for
construction heuristiand ABHC. The columns denoted denote the number of unserved
customers.

6.3. THE ATTRIBUTE BASED HILL CLIMBER (ABHC)

Algorithm 15: ABHC algorithm for VRP with First Fit
Data: Routing Plany
Result Routing Plany,

19—
2 while truedo

3 I dentifyWrstAttributes(y)
4 foreach~; € N(v) do

5 if Accept (~,) then

6 Rt

7 Updat eAttri but es(~)
8 if v <, then

9 Yr

10 restart while

11 end

12 end

13 end

14 break while

15 end

Results of First Fit

The ABHC using the First Fit principle was compared with ABHC using BestHie results
are reported in Table 6.5. The three rightmost columns show the diffexenbere bold results
denote those in which Best Fit gave the best results. Although the solut®nstainambiguous,
the choice of algorithm setting to use is Best Fit. Amongst other, this is badgestifrit finding
two solutions with less unserviced customers, as opposed to First Fit, dioifiany solutions
with fewer unserved customers than Best Fit.

6.3.5 Other Ways of Speeding Up ABHC

In the basic algorithm, all the attributes are initialized withexcept, of course, those that are
part of the starting solution. This allows the algorithm to traverse even thalgtximum, and
thereby also reach different local minima. While this is desirable for seeyes much of the
search landscape as possible, it also potentially increases the running thmeatgorithm, due
to the time consumed by searching irrelevant parts of the search land$csigad, one could
initialize the attributes with, for example, the objective value of the initial solutiohhis would
mean that the algorithm would not be allowed to traverse any solutions withjectigb value
greater tham:. This obviously limits the ways the algorithm can traverse the search larejscap
and therefore could also limit the running time of the algorithm. The pitfall of thaagk, is
that having anc of too low value, would limit the searched landscape by too much, and having
a very larger would have too little effect to affect the execution time.

For testing this, runs of the ABHC was made with 4 different starting valueslinG the

56

CHAPTER 6. OFFLINE ALGORITHMS

Best Fit First Fit Diff.
Instance || u length cpu(s)| u length cpu(s)| u length cpu(s)
R101 0 1661.21 13.04/ 0 1676.21 12.70f O -15.00 0.34
R102 0 1507.03 60.41) 0 1482.69 85.86| O 2434 -25.45
R103 0 1250.59 127.32] 0 1244.33 85.78/ O 6.26 41.54
R104 0 993.30 100.81| O 990.82 111.80] O 248 -10.99
R105 0 1415.37 20.58 0 1478.80 10.73) O -63.43 9.85
R106 0 1320.47 59.81) 0 1262.38 103.27| O 58.09 -43.46
R107 0 1094.99 59.22| 0 1104.62 81.97| 0 -9.63 -22.75
R108 0 949.54 86.44| 0 954.38 66.39| O -4.83 20.05
R109 0 1164.99 60.55| 0 1183.66 62.62| 0 -18.67 -2.07
R110 0 1076.16 81.80 0 1090.69 71.24, O -14.53 10.56
R111 0 1131.04 96.88| 0 1093.80 102.17] O 37.25 -5.29
R112 0 981.98 101.13| O 975.14 108.17| O 6.84 -7.04
R201 0 123511 117.30f 0 1221.88 92.29] 0 13.23 25.01
R202 0 111081 29199 0 1110.17 254.01 O 0.64 37.98
R203 0 909.09 531.33| 0 901.20 655.14| O 7.89 -123.81
R204 0 755.61 918.19| O 763.38 768.92 O -7.78 149.27
R205 0 996.76 257.33| 0 979.60 28251 O 17.16 -25.18
R206 0 894.33 643.46| 0 909.12 506.77| O -14.79 136.69
R207 0 814.99 785.11| 0 824.06 687.14) O -9.07 97.97
R208 0 707.71 905.11] O 730.32 979.72| O -22.61 -74.61
R209 0 864.14 354.97| 0 868.58 375.37] 0 -4.44 -20.40
R210 0 932.83 414.83| 0 930.40 467.66| O 2.43 -52.83
R211 0 763.93 588.74| 0 757.86 668.92] 0 6.07 -80.18
C101 5 111531 3.30 5 1115.31 2.44| 0 0.00 0.86
C102 0 995.01 29.51| 0 1141.87 46.99] 0 -146.86 -17.48
C103 0 859.37 147.84| O 828.07 121.13] O 31.30 26.71
Cc104 0 824.78 359.72| 0 852.59 299.85 0O -27.81 59.87
C105 3 1253.75 10.73| 5 1401.45 7.38| -2 - 3.35
C106 0 893.14 15.12| 0 1181.40 1582 0 -288.27 -0.70
C107 0 968.96 18.58| 0 1067.77 12.23] 0 -98.81 6.35
c108 0 1051.56 28.66 0 959.74 34.03| 0 91.82 -5.37
C109 0 828.94 130.05| O 881.05 114.17| O -52.11 15.88
C201 0 591.56 44.36| 0 591.56 10.34| O 0.00 34.02
C202 0 985.63 1481 O 964.18 19.13| O 21.45 -4.32
C203 0 620.30 377.55| 0 591.17 43498/ 0 29.12 -57.43
C204 0 590.60 525.00 O 823.15 298.67| 0O -23255 226.33
C205 1 770.90 12.59| 1 770.90 12.46| 0 0.00 0.13
C206 0 672.10 22.03| 0 588.49 37.13] O 83.60 -15.10
C207 0 588.29 52.66| 0 588.29 4311 O 0.00 9.55
C208 0 678.50 46.39| 0 678.50 53.22| 0O 0.00 -6.83
RC101 0 1700.30 13.14/ 0 1715.34 12.04 O -15.04 1.10
RC102 0 1477.96 33.71) 0 1494.05 69.83 0 -16.09 -36.12
RC103 0 1321.09 62.80, 0 1278.30 51.39] O 42.79 11.41
RC104 0 1158.52 90.97| 0 1183.88 69.34/ 0 -25.37 21.63
RC105 0 1644.31 10.32) 1 1716.16 10.57| -1 - -0.25
RC106 0 1430.55 25.85| 0 1406.81 16.70| O 23.74 9.15
RC107 0 1320.98 33.92| 0 1294.32 3141 0 26.66 251
RC108 0 1151.89 48.75| 0 1163.76 57.24) 0 -11.88 -8.49
RC201 0 1369.85 94.05| 0 1405.97 76.52] 0 -36.12 17.53
RC202 0 1234.16 23335 0 119791 262.32 O 36.25 -28.97
RC203 0 1003.80 390.61 O 969.97 553.39| O 33.83 -162.78
RC204 0 804.18 730.25| 0 791.40 740.60] O 12.78 -10.35
RC205 0 1260.64 22345 0 1265.62 186.23 O -4.98 37.22
RC206 0 1125.23 184.04 0 1126.25 193.73 O -1.02 -9.69
RC207 0 970.78 494.97| O 996.38 433.18| O -25.60 61.79
RC208 0 793.19 456.94| 0 782.66 507.96/ 0O 10.53 -51.02

Table 6.5: Comparison of the ABHC using First Fit and Best Fit The labelu in the column header,
denotes unserved customers. The rightmost column repertsifference in the quality of the
two settings. Results reported in bold are those in which Biéperformed best.

57

6.4. ITERATED LOCAL SEARCH (ILS)

objective value of the starting solutian tests was made with initializing the attributeste5 -
a,1.00-a,1.05-a and1.15 - a. These were compared to runs with the regular initial valusoof
The starting solution was found by a runlafpact followed by the Ejection Chain algorithm.
The result can be found in Table 6.6.

As can be seen, a setting@95 - a objective value is extremely fast, but the results are equally
bad. Oddly, for the rest of the settings the running times are worse tham dfithsecc setting,
even though this finds betters solutions. Further tests were made with seftihg® oa and
2.00 - a, and although these yielded better results than the initial solutions displayezitabti,
the solutions obo were still superior in terms of both time and quality. It has not been possible
to diagnose why this happens. It might have something to do with the freeflomovement in
the search landscape. The standard ABHC is allowed to move freely indhehdandscape,
thus very quickly locating good local optimums. This freedom is greatly limiteddwng an
lower attribute value, since ABHC have to find alternative ways from minima to miniroga
exceeding the attribute value. This means that the movement in the searatafamesll be
slower, and attributes not in the start solution will be involved in a solution laggy in the
search process. Alternatively, with the standard ABHC, the attributes rb@imvolved in a
solution very fast, due to the freedom of movement.

Obviously, the choice for initial value of edgesdis.

6.4 lterated Local Search (ILS)

Although ABHC finds good solutions, its long runtime potentially makes it unsuitable as a sub-
procedure for the online stochastic algorithms described above - sohérdyttamic VRPTW
would simply take too long with full runs of ABHC. Rather, an efficient algaritis necessary,
since the runtime has to be short for it to be usable.

The choice ofl terated Local Search (ILS) [Hoos and Sitzle, 2005] is amongst
other based on this. ILS is a meta heuristic based on regular local s@drelhdea is to solve
an instance with a local search to reach a local optimum. As an escapeysttiagegplution is
permuted and a new local search is made. This is continued until some cetgrat{me limit)
is met. At this point, the algorithm returns the best solution found. The permutatmvs the
algorithm to escape the local minimum so the following local search is able th ssa@ew local
minimum.

Although briefly examined by Van Hentenryck and Bent [2006], it is neaicwhat the best
balance is between speed in offline algorithm and quality of offline solutwinen using it for
the Online Stochastic Algorithms. The speed affects the number of instaateatibe sampled
and solved and the number of optimizations on each instance. The facttimaditerated local
search can be made arbitrarily long (by allowing arbitrarily many searahigation cycles),
makes ILS very suitable for examining the above mentioned balance. Thastfpsssible run of
ILS is to simply do one local search and return the solution as the result. Téffedsively the
same amount of time as a local search. For each permutation/local sealehtloy algorithm
will take longer, but also have an increased chance of returning anvegbresult.

58

CHAPTER 6. OFFLINE ALGORITHMS

| Sol. Value 0.95 [Sol. Value 1 [Sol. Value 1.05 [Sol. Value 1.15 [0o |
[[[u length — cpu(s)| u length cpu(s) | u length cpu(s) | u length cpu(s) | |
C101 5 1221.79 210 5 1142.97 3.84| 5 1142.97 5.00| 5 1142.97 6.62| 5 1115.31 2.34
C102 1 1990.56 0.02| 1 1426.83 10.72| 1 1426.83 36.08| 1 1426.83 38.26| 0O 995.01 28.74
C103 0 2299.31 0.02| 0 870.32 205.14| 0 870.32 44287 0 870.32 45993 0 859.37 149.03
C104 0 1978.38 0.03| 0 824.78 481.36| 0 824.78 1237.42| 0 824.78 1319.75| 0 824.78 365.99
C105 7 1701.27 0.03| 7 1638.30 251 7 1638.30 521| 7 1638.30 540| 3 1253.75 10.75
C106 5 1903.67 0.02| 5 1798.38 1.78| 5 1798.38 250| 5 1798.38 262| 0 893.14 15.30
Cc107 3 1901.96 0.02| 3 1633.59 3.78| 3 1633.59 575| 3 1633.59 7.14| O 968.96 18.25
C108 3 1714.50 0.03| O 1051.56 128.42| 0O 1051.56 174.85| 0 1051.56 188.30| O 1051.56 28.61
C109 0 1936.40 0.03| O 828.94 166.81| O 828.94 496.71| 0O 828.94 531.12| 0 828.94 132.62
C201 0 715.07 20.82| 0 715.07 796| 0 715.07 19.25| 0 715.07 2021 O 591.56 43.12
C202 4 1381.11 0.02| 4 1336.03 1.71| O 985.63 7752| 0 985.63 8158| 0 985.63 14.54
C203 0 2259.68 0.02| O 620.30 447.25| 0 620.30 750.19| 0 620.30 994.33| 0 620.30 373.41
C204 6 1557.39 0.01| O 590.60 1162.65| 0 590.60 1552.41| 0 590.60 1832.28| 0 590.60 527.03
C205 1 1013.79 0.02| 1 964.86 127 1 964.86 327 1 964.86 353 1 770.90 12.56
C206 0 945.44 0.02| O 672.10 2135| 0 672.10 44.73| 0 672.10 4756| 0 672.10 21.89
C207 1 1164.46 0.02| 0 588.29 73.69| 0 588.29 175.02| 0 588.29 184.84| O 588.29 52.13
C208 2 1169.78 0.03| 0 678.50 82.82| 0 678.50 237.29| 0 678.50 24581| O 678.50 46.41
R101 1 1959.64 0.18| 0 1661.21 21.70| O 1661.21 53.38| 0 1661.21 57.89| 0 1661.21 12.15
R102 1 1946.28 0.02| 0 1507.03 109.71| O 1507.03 111.36| O 1507.03 111.32| O 1507.03 60.68
R103 0 1797.63 0.03| 0 1279.13 113.80| O 1279.13 252.82| 0 1279.13 391.24| 0 1250.59 130.28
R104 4 1456.85 0.02| 0 993.30 355.35| 0 993.30 614.41| 0 993.30 604.44| 0 993.30 103.28
R105 0 1734.82 0.02| 0 1415.37 29.52| 0 1415.37 68.03| 0 1415.37 70.82| 0 1415.37 20.93
R106 1 1800.63 0.02| 0 1320.47 86.13| 0 1320.47 208.56| 0 1320.47 221.10| O 1320.47 60.74
R107 4 1441.31 0.02| 0 1094.99 236.53| 0 1094.99 318.10| O 1094.99 328.00| 0 1094.99 60.37
R108 8 1327.77 0.02| O 949.54 317.32| 0O 949.54 44559 0 949.54 445.71| 0O 949.54 88.10
R109 2 1670.24 0.04| O 1164.99 119.50| O 1164.99 376.05| 0O 1164.99 395.40| O 1164.99 61.31
R110 5 1533.38 0.02| O 1076.16 309.42| 0 1076.16 424.45| 0 1076.16 459.40| O 1076.16 83.78
R111 5 1445.10 0.02| O 1131.04 345.12| 0 1131.04 511.06| O 1131.04 606.87| O 1131.04 97.80
R112 1 1402.74 0.02| O 981.98 181.81| O 981.98 412.83| 0 981.98 440.84| 0O 981.98 103.48
R201 0 2490.93 0.14| O 1246.64 108.59| 0 1246.64 246.04| O 1246.64 357.32| O 1235.11 115.42
R202 0 2147.67 0.04| O 1110.81 412.77| 0O 1110.81 812.95| 0 1110.81 1228.36(0O 1110.81 289.00
R203 0 2105.30 0.03 0 909.09 699.64| 0 909.09 1174.84| 0O 909.09 1668.70| 0O 909.09 525.90
R204 0 1864.73 0.02| O 755.61 1080.07| O 755.61 2164.19| 0 755.61 2243.73| O 755.61 909.69
R205 0 2295.75 0.02| 0 996.76 340.87| 0 996.76 652.22| 0 996.76 643.75| 0 996.76 256.09
R206 0 2334.61 0.02| 0 894.33 778.49| 0 894.33 1388.98| 0 894.33 1886.00| 0 894.33 635.13
R207 0 1937.67 0.01| O 814.99 897.43| 0 814.99 1393.04| 0 814.99 1444.39| 0 814.99 789.06
R208 0 1912.13 0.04| O 707.71 1076.80| O 707.71 1959.21| 0 707.71 2054.67| O 707.71 917.18
R209 0 2506.80 0.02| 0 864.14 438.49| 0 864.14 802.15| 0 864.14 834.44| 0 864.14 355.68
R210 0 2667.28 0.01| O 932.83 514.32| 0 932.83 91091| 0 932.83 1255.44| 0 932.83 417.55
R211 0 2385.57 0.02| 0 763.93 678.58| 0 763.93 1070.47| O 763.93 1102.87| 0 763.93 593.57
RC101 3 2056.83 0.20(O 1700.30 43.43| 0 1700.30 7781 O 1700.30 62.57| 0 1700.30 12.81
RC102 1 2055.36 0.02| © 1545.80 38.26| O 1545.80 83.00(O 1545.80 86.97| O 1477.96 36.19
RC103 3 1727.08 0.00| © 1321.09 195.97| 0 1321.09 197.33| 0 1321.09 375.62| 0 1321.09 66.86
RC104 10 1430.22 0.03| 0O 1158.52 314.87| 0O 1158.52 521.19| O 1158.52 462.49| 0 1158.52 96.57
RC105 3 1999.04 0.03| O 1644.31 23.73| O 1644.31 43.58| 0 1644.31 37.70| O 1644.31 11.02
RC106 2 1732.95 0.03| O 1446.01 36.78| 0O 1446.01 98.30| O 1446.01 102.60| 0O 1430.55 27.73
RC107 5 1651.51 0.02| O 1320.98 123.47| O 1320.98 182.80| 0 1320.98 226.10| O 1320.98 36.28
RC108 4 1566.82 0.03| 0 1151.89 171.20| O 1151.89 308.32| 0 1151.89 306.07| O 1151.89 52.38
RC201 0 2498.03 012 0 1369.85 144.92| 0 1369.85 300.15| O 1369.85 299.99| 0 1369.85 92.16
RC202 0 2478.15 0.02| O 1234.16 350.19| O 1234.16 673.19| 0 1234.16 1018.23| 0O 1234.16 233.29
RC203 0 2554.39 0.02| 0O 1003.80 474.47| O 1003.80 802.27| 0 1003.80 818.73| 0 1003.80 391.68
RC204 0 2345.47 0.02| 0 804.18 788.85| 0 804.18 1158.29| 0 804.18 1609.18| 0 804.18 727.06
RC205 0 2750.94 0.02| 0 1260.64 334.73| 0 1260.64 695.13| 0 1260.64 1004.92| 0 1260.64 223.43
RC206 0 2608.50 0.01| O 1125.23 251.69| O 1125.23 494.43| 0 1125.23 526.24| 0 1125.23 183.57
RC207 0 3077.34 0.02| 0 970.78 626.40| O 970.78 1091.04| 0 970.78 1594.38| 0 970.78 502.24
RC208 0 2685.74 0.02 O 793.19 592.65| 0 793.19 996.53| 0 793.19 1444.73| 0 793.19 463.61

Table 6.6: Comparison of the ABHC with Different Initial Val ues for attributes: Sol. Valueis the
objective value of the starting solution. The ABHC was ruthwhis value multiplied by 0.95,
1, 1.05 and 1.15, and also with the original setting>of The starting solution was created
using a run ofl npact followed by a run of the Ejection Chain algorithm. Lahein the
column header denotes unserved customers.

59

6.4. ITERATED LOCAL SEARCH (ILS)

6.4.1 Base Algorithm

As described above, the basic idea of Iterated Local Search is toecadapal optimum, by
permuting the solution followed by a new local search. Assuming the solutisparanuted into
a suitable region of the search space, there is a chance that the algorithtindg new local
optimum. The base algorithm is described in Algorithm 16 below, while the implemeamtattio
the actual permutation will be described afterwards.

Algorithm 16: IteratedLocalSearch
Data: routingPlarry, timeLimit
Result Routing plary,

1% <7
2 while time spenk timeLimit do
v — pernut e()
~v« 1 ocal Search(~)
if w(vy) <w(~) then
| we—
7 end
g end
9 return-,

o o1 b~ W

The algorithm takes a starting solution and a time limit as arguments. This solutimedaa
the current best (line 1). Following this, the main loop (line 2-8) is enterathing for as long
as allowed by the i meLi ni t argument. The core of the algorithm is line 3 and 4, in which
the current best solution is first permuted, and then guided to a local optbyi@ntocal search.

If an improvement is found, this new solution is saved as the best (linelbtfg time limit has
not been reached, the while loop ensures the continued running of tirétatlg When the time
limit is reached, the loop is terminated, and the best solution found thus faoiaed (line 9).

This is the most basic version of the algorithm, and it could be extended inatevays.
One common modification is to improve the condition of the while loop. This could be do
by checking the number of iterations done without finding improvements. laldp@rithm is
not able to find improvements in a long series of permutation/search cyctwehare it is not
worth the time to keep trying, at least not using the same permutation method.

As can be seen above, the basic algorithm is very simple, and the actkaisvetume in its
two important subroutines; the permutation and local search. The chdiseabEearch will be
described in section 6.4.2. The options for permuting the solution is destréted.

Permutation by Neighbourhood If the local search algorithm, used in ILS, is using a sin-
gle neighbourhood, the permutation could consist of a series of movestimameighbourhood.
These moves should not be restricted by a requirement of improving thetiebjiunction, but
rather serve as a way of scrambling the solution in a way the local seagitbnarhood is not
able to. Since the defined neighbourhoods used in this project only mtwedrefeasible solu-
tions, the permutation will result in a feasible solution, and hence the localsedl of course
also result in one.

60

CHAPTER 6. OFFLINE ALGORITHMS

A potential problem with this permutation, is that the permuting neighbourhood méxg tite
able to scramble the solution sufficiently. As an example, we let leocat i on neighbour-
hood be used in the local search. If the found solution is very tight in tefthg glack in visiting
times, so each customeris visited just beforé(c;), this allows very few, if any, valid moves
for theexchange neighbourhood. This means that the permutation will not be scrambled very
much, and consequently ILS is less likely to explore many local optima. Fuartrer finding
valid moves for permutation might be time consuming, which is not desirable in theugsgion
phase of the algorithm.

Permutation by Removal Another option is, that given a solution, some percentage of
the customers are removed from the tours, and put into the pool of unadsigstomers. This
ensures that the remaining assigned customers are still valid in terms of theiritidaws. And

in the local search following the randomization, the unassigned customebeaaassigned to
vehicles.

Of course, one should ensure that a feasible solution is indeed réactitdy this kind of
permutation. If objective function (2.6) or (2.7), page 8, is used, alflasolution is easily
reachable if using theel ocat e neighbourhood in the local search. Since we have an unlim-
ited number of vehicles available, one can simply take each customer frorattbewsserved
customers, and assign it to a new route. While this would result in a verydiatlos, it is
nevertheless feasible. Using tagchange neighbourhood, on the other hand, does not allow
us to reach a feasible solution, so this is not usable in combination with permuytirggroval
of customers. If the objective (2.9), page 9, is used, the solution foyriddopermutation is
feasible, since unserved customers are allowed according to this.

The point of the permutation in ILS is to scramble the solution sufficiently to raatfierent
part of the search space, where another local minimum can be foutndtoais much as to be
similar to a Random Restart heuristic, in which the local search start framaletely random
solution. In terms of the permutation by removal; if too few customers are redrfovm the
routing plan, the local search would be likely to insert the unrouted custimtre same places,
reaching the same local optimum and making the randomization pointless. Rertmvimgny
customers could be too close to a total randomization, since there is too dreadam in
placement of customers, making the algorithm slow and inefficient, andiefflgcvery similar
to a random restart local search. The main point in the permuting partSfsiito guide the
algorithm to different positions in the search space, not to limit its exploratiando small part
of it. Therefore, some sort of tuning in the number of customers to be raht@sto be done.

Permutation by Removal and Neighbourhood Yet another option would be to use a
combination of the two permutations described above. First: remove of sothe ofistomers
in the routes, then follow this by a series of moves in the neighbourhoodsedthy the local
search. The removal of customers allows a greater freedom for thiebioeidhood to scramble
the solution, reducing the problem with too tight solutions described abosmgla different
neighbourhood for the permutation scrambles the solution further, while nmangavalid time
windows. Hopefully, this forces the local search to examine a differaritqd the search space,
than it would if the simple removal of customers was used. The time used foraimsupation

61

6.4. ITERATED LOCAL SEARCH (ILS)

could be problematic, but having having more freedom from the remo&droers, is likely to
make valid moves in the permuting neighbourhood easier to find, thus diegréastime spent
by this part. Like permutation by removal, this type of permutation is only valid wisémg the
relocate neighbourhood in the local search fase, because we wamtatiebto find a feasible
solution when performing local search.

6.4.2 Tuning

For the local search sub-procedure, Best Fit is used. This simplgrssathe entire neighbour-
hood of the current routing plan, and moves to the best neighbour. Doelidity of exhange
to add new unassigned customers to the routing plan, the Relocate neigbdibis used by the
Best Fit local search.

To find the best type of permutation, the three permutations described abozé¢uned indi-
vidually. This was done on six instances, one from each class of Solontandes, selected at
random. As the ILS might be run in a range of different time spans, the tuvéisgdone on a
30 CPU second time horizon, but results were reported as soon as tfeefowed. This allows
the examination of how fast good results are found for the different gettifhe tuning will be
described in the following.

Due to the tuning being inconclusive, a race was set up comparing all settingll permu-
tations, on a 10 CPU second time horizon. This will be described after thadodl tuning of
the permutation types.

Tuning Permutation by Neighbourhood

As described above, 6 instances were used to tune the permutation pasametemserved
customer contribute with 1000 units to the objective function, equal to addiogta length of
1000. The number of moves made in each permutation were selected to be25, drtd 35.
For each move, the entire neighbourhood is searched for feasible naokea random of these
is selected. Since the local search used the Relocate neighbourhooérrthagtion was done
using the exchange neighbourhood.
The results are shown in Figure 6.4. As can be seen, no setting was cugratior. All

settings find good solutions on some instances, while being inferior on offefind the best
setting further testing is needed. This is done when racing the differenupetion types below.

Tuning Permutation by Removal

The tuning of permutation by removal of customers was done in the same wéthgsermu-

tation by neighbourhood, described above. An unserved customeibcda 1000 units to the
objective function. Settings was tested with 5, 10, 15, 20 and 25% of thtedawstomers
being removed. The results are compiled in Figure 6.5. Overall, the settingpbfsBems to
be performing well, except on the C107 instance, on which the 15% settingésisr. Also,

the setting of 5% seems to perform rather poorly in general. The explaratitims, is when

removing only 5% of the customers, the local search simply finds the samerocedum. Or

in other words, the solution is not sufficiently permuted to allow the local kearceach new
local minima.

62

CHAPTER 6. OFFLINE ALGORITHMS

Test of Permutation by Exchange on R110 Test of Permutation by Exchange on R204
8
g Geize .
—— 5 exchanges ° REEIiiire-aig -o- 5 exchanges
g - 15 exchanges g . DEEE - - 15 exchanges
s o~ 25 exchanges S I - o~ 25 exchanges
—— 35 exchanges) . N - &~ 35 exchanges
s | d S T
3 B EEEETEEEEEEEER
L =)
E] \ e 37
A 3
s 8| \ N s
> 8 \ . 2
2 \ N g O
g \ AN £ g4 e
[SR\ g °© "o
N
g AN N S
g . \ . s | |
g | N N & o
K — N .
| S o
g ©
T T T T T T T T T T T T T
0 5 10 15 20 25 30 5 10 15 20 2 30
Cpu (s) Cpu (s)
Test of Permutation by Exchange on C107 Test of Permutation by Exchange on C203
3
— g 1
8 —— Sexchanges | | - —o— 5 exchanges
< N i —=— 15 exchanges o —=— 15 exchanges
N \ o~ 25 exchanges 8 o~ 25 exchanges
8 N pe B pe
g . 4 35 exchanges 4 35 exchanges
3 AN 3
AN g |
3 \ S
2 8 AN H
S
s N S 8]
g g R
5 84 5
o I 2 =4
2 = 8
° o [SI-1
8 4
3 s | N
o 8 .
g |
2
8 s |
=] BN e ® o
g |
L T T T T T T T T T T T T T T
o 5 10 15 20 25 30 o 5 10 15 20 25 30
Cpu (s) Cpu
Test of Permutation by Exchange on RC104 Test of Permutation by Exchange on RC206
o —— 5 exchanges o —— 5 exchanges
g —— 15 exchanges g | \ —— 15 exchanges
& o~ 25 exchanges = o~ 25 exchanges
N - 35 exchanges - 35 exchanges
g |
o g 9
R s 8
S 84 T3
v ®
2 2
5 o 5
£ 81 =
o @ ° o
g
3 kit
8 \
g \
3 \
=] \
g \
B 3
| &
T T T T T T T T T T T T T T
o 5 10 15 20 25 30 o 5 10 15 20 25 30
Cpu (s) Cpu (s)

Figure 6.4: Permutation by Neighbourhood: Graphs of the ILS algorithm run on one Solomon instance
of each class. For each instance, four settings for numbmiowgés to do were tested: 5, 15,
25 and 35. Larger versions of the graphs can be found in Appéndl.1.

Tuning Permutation by Removal and Neighbourhood

As described above, the problem with permuting by removal, could be thaothdons are
not sufficiently permuted, and the following local search simply reachesaire local mini-
mum. Similarly, in a tight plan, there might not be room for very many neighbourioges,
resulting in too little permutation being done. The third option is the combination of tines
permutations, in whicla percent of the routed customers are removed, followed noves
in the neigbhourhood. This was tested with the settingg&:of 5,b = 5), (a = 5,b = 15),

63

6.4. ITERATED LOCAL SEARCH (ILS)

Test of Permutation by Removal on R110 Test of Permutation by Removal on R204
3
g
3
~ .
—e— 5% removed \ © —6— 5% removed
8 —=— 10% removed 24 —=— 10% removed
2 o~ 15% removed >~ 15% removed
o —£— 20% removed —4— 20% removed
g 5~ 25% removed 7~ 25% removed
8
I s g |
S 81 5 8
2 2
T g B
£ g 8
o © °
2 4
§ i 8
3
8
a
3
g
8
T T T T T T T T T T T T T T
0 5 10 15 20 2 30 0 5 10 15 20 2 30
Cpu (s) Cpu (s)
Test of Permutation by Removal on C107 Test of Permutation by Removal on C203
3
g

—o— 5% removed
—=— 10% removed
—— 15% removed
—— 20% removed
—— 25% removed

—o— 5% removed
—=— 10% removed
—— 15% removed
—— 20% removed
—— 25% removed

4000

1200
I

g g
2 2
S g g
s 8 s
g 8 g 8
B 2 §,
< s
5 g
S S
3
8
g —=
8 3
2 |
8
e
\ e
\ —————— & s, wg
8 4 B ——
= T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Cpu (s) Cpu (s)
Test of Permutation by Removal on RC104 Test of Permutation by Removal on RC206
8 4 —e— 5% removed g —e— 5% removed
2 =~ 10% removed 3 —=— 10% removed
o~ 15% removed o~ 15% removed
° & 20% removed 4~ 20% removed
8 1 —7— 25% removed 24 —7— 25% removed
g 3
s 8 s g
s 87 s § A
2 R
g s
= =
s g = = S g
o \ g
PN . A
g . 2
< 8
g ——a
8
g T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Cpu (s) Cpu (s)

Figure 6.5: Permutation by Removal: Graphs of the ILS algorithm running on one Solomon instance
of each class. For each instance, five settings for percemfgustomers to remove were
tested: 5, 10, 15, 20 and 25%. Larger versions of the graphbe#ound in Appendix A.1.2

(a =10,b =5) and(a = 10,b = 15). The results are compiled in Figure 6.6.

Again, it is hard to point out a superior setting. Although a settingaoft= 10,6 = 15)
seems to perform well in general it fails to produce good results on Giéilarly, a setting of
(a = 5,b = 5) seems to perform well, except for the instances R204 and RC206. Sexeedte
the two extremes of the parameter settings, it could indicate that the resulsramependent
on instance type. In any case, further testing needs to be done on dnegpars, and this is done
below.

64

CHAPTER 6. OFFLINE ALGORITHMS

Test of Permutation by Removal and Exchange on R110 Test of Permutation by Removal and Exchange on R204
3
8
8
2
—— 5%rem,, 5 exch 2 | —e— 5% rem., 5 exch
g | —=— 5% rem., 15 exch. @ —=— 5% rem., 15 exch.
g —— 10% rem., 5 exch —— 10% rem., 5 exch
4~ 10% rem., 15 exch 2 —&— 10% rem., 15 exch.
g | 3
g - o
2 B — 2 g I
s 8 3 5
3 s \
] 2 o \
o © A S— ———————\—
S 2 \ —e—0
g | 8 \
& \
o \
3 \
2 & \
= \
T T T T T T T T T T T T T
4 5 10 15 20 25 30 5 10 15 20 25 30
Cpu (s) Cpu (s)
Test of Permutation by Removal and Exchange on C107 Test of Permutation by Removal and Exchange on C203
2
e — g
g | 75T, 5 exch_ —— 5%rem., 5 exch
2 —— 5%rem,, 15 exch 2 —=— 5% rem,, 15 exch.
—— 10% rem., 5 exch & —— 10%rem., 5 exch
& 10%rem, 15 exch. |\ —— 10%rem., 15 exch
2 g
8 | 8
g S
g 5 g
3 8 g
3 : 8
s s
2 g 2
: 2 2 N
g 8 g 84 -
= 2 S
S S :
3 7 \
8 1 _ E——
o ~~—
i —
2 R
g1 B —_— -
T T T T T T T
o 5 10 15 20 25 30
Cpu (s)
Test of Permutation by Removal and Exchange on RC206
2 3
8 | 8
g S
8 3
3
3 2 |
g | a
g R]
3 3
s R
2 2 84
3 8 g
s 8 & .
8
B
~——a
2
8
3 g
S -
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Cpu (s) Cpu (s)

Figure 6.6: Permutation by Removal and Neighbourhood:Graphs of the ILS algorithm running on
one Solomon instance of each class. For each instance dtiings were tested. Calling the
percentage customers removednd the number of moves done in the neighbourhgdide
tested settings wer@ = 5,b = 5), (a = 5,b = 15), (a = 10,b = 5) and(a = 10,b = 15).

Racing All Permutation Settings

From the previous sections, it is clear that further testing is needed t¢ $eddest method and
settings of permutation for ILS. Either the settings were not significantlyrdiftein the results
they produced, or the test base of 6 instances was too small.

To find the best permutation method and setting, a race was set up betwtdenmlmuta-
tions and settings described above. The race was done on all the Solasterces. Each run

65

6.5. COMPARING ABHC AND ILS

was given 10 seconds, which seems realistic for the purpose of the Gtdideastic Algorithms
examined in this thesis. The settings of the race, are the same as describettbim®.1.1.

The output of the race is given in Appendix B.2. Only two candidates weat the end of
the race, namely permutation by removal of 20% and 25% of the custometbe Agtting of
25% found the best solutions most frequently, this is the setting that is uskdfo

6.5 Comparing ABHC and ILS

In the context of this thesis, offline algorithms are needed for three paspavhen deciding the
number of vehicles available for the online instances, to compare the parioe of the online
stochastic algorithms, and as a sub-procedure for these. For the frputposes, no there is
no time limit for the running time of the algorithms, and hence ABHC seems naturaeto u
given its good results. The ILS was implemented for the specific purpdsactfoning as a fast
sub-procedure, that was able to run for as long time as specified while &tigrigimprove on
the solution. It is very easy to modify the ABHC to have a time limit though. Since Bid@
at all times keep track of the best solution found so far, one can simplyrétisrwhen no more
time is available. This makes it usable as a sub-procedure for the onlinastiochigorithms.
The only problem with ABHC is its natural limit on how long it can improve a soluti&uit
given the good solutions that ABHC is able to find, if it has sufficient time toHinigturally,
the solution must be considered sufficiently good.

To compare the ABHC and ILS algorithms in terms of their function as a sutedrtoe of
the Online Stochastic Algorithms, each was given 10 seconds to run, stiidinga solution
generated by Impact followed by Ejection Chain. The algorithms were ruth@rsolomon
benchmarks, and the results are compiled in Table 6.7. Surprisingly, ABH@&sier to ILS
on every instance. Apparently ABHC is very efficient at finding someg geiod local minima
fast.

During the run of the online algorithms, more and more parts of the route willxaget,
making the solution space smaller. In effect this is similar to scaling down the aestare
that the algorithms have to solve. This makes the probability of the ABHC algotaimish
naturally greater, and hereby find very good solutions.

Based to these results, the ABHC was concluded to be superior as acaghre for the
Online Stochastic Algorithms.

66

CHAPTER 6. OFFLINE ALGORITHMS

Instance ABHC ILS Diff.

u length | u length | u length(%)
C101 5 111531| 5 1221.79| O 9.55
C102 1 1318.63| 1 1639.94| 0O 24.37
C103 0 1095.60| 0 1496.13| O 36.56
C104 0 958.62| 0 1337.64| O 39.54
C105 3 1253.75| 7 1640.60| 4 30.86
C106 0 1153.19| 5 1798.38| 5 55.95
c107 0 1256.02| 3 1679.36| 3 33.70
C108 0 1165.72| 3 1561.14| 3 33.92
C109 0 884.00| 0 1813.07| O 105.10
C201 0 660.06 | O 860.57| 0 30.38
C202 0 991.15| 4 1336.51| 4 34.84
C203 0 620.30| 0 1398.44| 0 125.45
C204 0 945.84| 2 113341| 2 19.83
C205 1 77762 | 1 964.86 | 0 24.08
C206 0 672.10| O 903.90| 0 34.49
C207 0 588.29| 1 1038.61| 1 76.55
C208 0 678.50| 0 1002.93| O 47.82
R101 0 1661.21| 0 1753.42| 0 5.55
R102 0 1525.29| 0O 1588.78| O 4.16
R103 0 1291.02| O 1368.40| O 5.99
R104 0 1037.39| 2 1146.06| 2 10.48
R105 0 141537| 0 1533.25| 0 8.33
R106 1 129563| 1 1461.00| O 12.76
R107 0 117292| 3 1252.01| 3 6.74
R108 1 984.36| 2 1057.04| 1 7.38
R109 0 1224.77| 2 1460.25| 2 19.23
R110 1 118445| 3 139361 2 17.66
R111 1 117243| 5 1270.16| 4 8.34
R112 0 999.77| 1 119847| 1 19.87
R201 0 1246.64| 0 1382.79| O 10.92
R202 0 1271.70| 0O 1383.00| O 8.75
R203 0 1178.71| 0O 1269.12| O 7.67
R204 0 918.42| 0 968.77| 0 5.48
R205 0 1036.76| 0 1171.15| O 12.96
R206 0 1078.32| 0O 1159.54| 0 7.53
R207 0 922.58| 0 960.60| 0 4.12
R208 0 788.84| 0 885.46| 0 12.25
R209 0 971.01| 0O 1041.95| O 7.31
R210 0 101465| 0 1150.64| O 13.40
R211 0 834.89| 0 93351 0 11.81
RC101 0 1700.30| 3 1855.80| 3 9.15
RC102 0 1545.80| 0 1911.68| O 23.67
RC103 1 1304.24| 2 134547| 1 3.16
RC104 2 1230.77| 7 1332.17| 5 8.24
RC105 0 1644.31| 2 1843.68| 2 12.12
RC106 0 145235| 0 1499.57| 0O 3.25
RC107 0 1358.34| 3 1408.19| 3 3.67
RC108 0 1256.00| 3 1445.18| 3 15.06
RC201 0 1499.98| 0 1687.47| 0 12.50
RC202 0 1384.29| 0 1511.38| O 9.18
RC203 0 1122.87| 0 1219.89| 0O 8.64
RC204 0 936.22| 0 1063.72| O 13.62
RC205 0 141261| O 1504.77| O 6.52
RC206 0 1156.15| 0O 1420.28| O 22.85
RC207 0 1111.83| 0 1301.26| O 17.04
RC208 0 929.44| 0 1038.34| O 11.72

Table 6.7: Results for Comparison of ABHC and ILS Given a Runring Time of 10 CPU Seconds:
The instances are the Solomon benchmarks, and the staotutgpa of the algorithms were
produced by a run of Impact followed by a run of Ejection Chain

67

6.5. COMPARING ABHC AND ILS

68

7 Oblivious Online Algorithms

When presented with a problem in which the input data becomes known dhgrexecution
of the algorithm, an intuitive approach would be to use oblivious online algosithEven if
stochastic knowledge could be made available, this might be difficult and catgalito acquire
as well as writing algorithms to incorporate this knowledge. For this readnivjaus online
algorithms are still used in many real life applications, because of their simplinitygmaight-
forwardness. Note that “oblivious online algorithms” in the context of thési describes the
class of online algorithms that do not take into account stochastic knowtddgeire events.

The oblivious online algorithms are relevant to study in this thesis for two cela@sons.
First of all, when studying one approach to a problem, it often makes fereseamine the
alternatives - in this case oblivious online algorithms. Although other waysanflling the
dynamic VRP have been examined, the time frame for this thesis is limited, and the onlin
approach is widely used and seemed the most obvious one to considendlyeto be able
to assess how well the Online Stochastic Algorithms perform, we need a basmparison.

By comparing the stochastic algorithms of this paper to online algorithms we ggeaof the
value of using stochastic knowledge in online problem solving. Furtherraareeasure can be
made ranging from worst (online) to best (offline) solution quality, allowisgo see how well
we are able to perform using the Online Stochastic Algorithm.

Three oblivious online algorithms were implemented for this thesis; Neareghbimur will
be described in section 7.1, Nearest Insertion will be explored in sectoand an algorithm
called Local Optimization will be described in section 7.3.

7.1 Nearest Neighbour

Like Van Hentenryck and Bent [2006], the Nearest Neighbour (N&ristic was chosen as an
online algorithm. This is due to its simplicity and good results for the dynamic vehispatth
problem in Larsen et al. [2002].

The basic principle of the algorithm is very simple. When a vehicle has finiserdce of a
customer (is idle), it travels to the nearest neighbouring customer. Thigaesa until they are
forced to return to the depot (due to the time horizon). While this seems aagafficient in
terms of minimizing the route length, the algorithm does not take into account the thdews,
and hence the routing plan risks having a fair amount of waiting time. It is warting that NN
waits as long as possible before making decisions. This allows for newnceitdo become
visible and to be taken into consideration when deciding which customer ®sext. For more
details on the algorithm, the reader is referred to Larsen et al. [2002].

69

7.2. NEAREST INSERTION

7.2 Nearest Insertion

Due to the possible flaws of the NN heuristic, another heuristic was implemértiecgpproach
is a bit different, in that it creates routes using all the available customsdsyhenever new
customers become available, these are inserted into the routes right dugig rather different
than the NN heuristic, that adds to the route, only when a vehicle is idle. TVentde is,
that having already constructed routes, inserting new customers into thisatitally take into
account the remaining part of the route, potentially yielding better solutionthefsame time,
this means decisions are based on fewer customers than by the NN heuarigtitch customers
are only added to a route when the vehicle is idle.

Algorithm 17: Nearest Insertion Heuristic.
Data: Online Instance
Result Routing Plan

~ « initialize empty routes

for t— Otohdo

C < new available customer at tinte

while C ¢ 0\/ 3¢ € C, cinsertable iny do
remove most suitable customer fr@drand insert iny at feasible position with
minimum increase iw(+y)

end

if C ¢ 0 then

\ addC' to set of unserved customers
end
10 end

g A~ W N P

© 00 N O

An outline of the algorithm, dubbed Nearest Insertion (NI), is given in Atgom 17. It starts
out by initializing each route as an empty tour (start and finish at the deguth the main loop
is entered (line 2-9). It runs through the entire timespan of the instanceflirend whenever
new customers become available (line 3), these are all inserted into the rplagmdgline 4-
6) one at a time, at a position in which they increase the total length of the rquitingoy a
minimum amount. If it is not possible to insert all the new customers into the roulémg ihe
remaining customers are assigned to the set of unserved customers.

In both NI and NN, ties are broken by simply using the first one found. asecof NN,
this means that if two neighbours are found with the same distance to the idléey&hecfirst
discovered is used. For NI, when equally good insertions are fouadirs discovered is used.

7.3 Local Optimization: Pool-based Online Algorithm

A third online algorithm named Local Optimization (LO) was also implemented. It snelg
alization of the algorithm by Gendreau et al. [1999], and its approachmswbat closer to that
of the Consensus algorithm. It has a partial plan, fixated up to current tame keeps a pool of
solutions based on the known customers which is used to guide the algoritlmodsglutions.

70

CHAPTER 7. OBLIVIOUS ONLINE ALGORITHMS

The algorithm is outlined in Algorithm 18. It starts by initializing the partial planas an
empty route, and the sét of visible customers. Line 3 calls a procedure for improving on
the pool of solutions until it is full (of size) or no more time is available. This is outlined in
Algorithm 19, and will be described below. The main loop (line 4-18) iterates the entire
time horizon. It starts by accepting the new requégtsand for each routing plan in the pool,
it attempts to insert the customers into it. In the implementation for this thesis, this is done
by means of the Ejection Chains algorithm. Following the insertion, a locallsé&amade to
improve the newly updated plan. The gets updated to contain the new customers in line 11.

Algorithm 18: Local Optimization
Result Full Plan-,,
Data: Poolsizep

1 vm < empty plan

2 R « customers available from beginning
3 i nproveSol utionPool (T, R,)

4 fort «— 1to hdo

5 if new request®; then

6 foreachy € I'do

7 InsertR; in vy

8 ~ « run local search on
9 end

10 end

11 R — RURy,

12 Py —getldl es(vmn)

13 if P,y ¢ () then

14 add customer to,,, based on best plape I'
15 I' + update and prune plans frolh

16 end
17 i mproveSol uti onPool (T, R, vm)
18 end

Line 12-16 handles idle vehicles. If a vehicle is idle, the best plan in theipaminsulted,
and its choice of customer is used for the partial plan The rest of the pool is then pruned for
routing plans not conforming to the selected request. In line 17, the proeéat improving on
the solution pool is called, and allowed to run for the remaining time.

Thei nproveSol ut i onPool procedure is shown in Algorithm 19. If the pool is not
full, new routing plans are generated based on the partialplaand the unserved customers
R\cust(ym). This continues to the pool is full or no more time is available. If time is still
available and the pool is full, the routing plans of the pool are optimized untihoke time is
available.

The idea in keeping a pool of routing plans, even though no sampled custaneeused, is
to attempt to accommodate the unknown customers. The more plans availabledter the
chance is for having a plan that is suitable for inserting the new requests.

71

7.3. LOCAL OPTIMIZATION: POOL-BASED ONLINE ALGORITHM

Algorithm 19: Improve Solution Pool
Data: Pool of solutionsI), visible customers, partial plany,,.

while time is availableAT" is not fulldo
\ I' — generate solutions based &rand-~;,,;

end
while time is availabledo

foreach~ € " do

| optimize ony;

end

end

0 N O OB~ W N P

The algorithm that is improving and generating solutions impr oveSol ut i onPool ,
must not be deterministic as this would lead to a pool of identical solutions. efidierthe
ABHC cannot be used for this, and instead ILS was used.

As can be seen, the LO algorithm is in many ways similar to the Consensus aigadbiti
with two important differences. The Consensus algorithm bases its p@aliropled customers,
whereas LO only takes known customers into account. Furthermoree@ausbases its choice
of customers for idle vehicle on a consensus of all the plans in the pooleageO bases it on
the best plan in the pool.

7.3.1 Tuning the Pool Size

Besides finding an offline solver, which has been done in section 6, théhimg to tune in the
LO algorithm is the pool size. For this, a race was set up between poslidfize5 and 10. Note
that a pool size of 1 is similar to have an offline solver improving on the solutiah &mes
available, and adding customers from it to the partial plan only when ndedadhen a vehicle
is idle).

The race settings were the same as those used in section 6.1.1. The algodtinCR&
minute before the time horizon started, and then 10 CPU minutes for the entirlt vas run
on all the Solomon benchmarks, and for each instance a random clashogen to make the
problem online (see section 5.4). This should test the algorithm on a vafigif§event instance
types and on different amounts of dynamic customers.

The output of the race is printed in Appendix B.3. A pool size of 5 gave #s¢ tesults, but
neither of the settings was superior enough to discard any of the otheratwdidates. For the
remainder of this thesis a pool size of 5 will be used.

72

8 Using Historical Knowledge

For this thesis, exact knowledge of the stochastic distribution of customavsiiable for the
instances created via the instance template described in section 5.2. Buha#ahlife appli-
cations this is far from realistic. In most cases, no models for the distributidrecustomers
are available, and if it is, it is likely to be either outdated, or too imprecise.

For some online problems, the online algorithms are run continuously orfptorey periods
of time, eg. packet scheduling. For these types of problems, one can attetearn the
distribution online using for example Hidden Markov Models. Here, sulseces of the input
might reveal information of the distribution and may be used to infer the statistobdtion or
train the model. Another approach is to look at the paitne steps, and derive the probability
that a specific request arrives in any of the subsequent time stepdafféigechnique is called
historical average. While these techniques are usable for some appbaaitionline Stochastic
Algorithms, they are not suitable for the online stochastic vehicle routinggmrotiealt with in
this thesis. For more information on these, the reader is referred to BentaenmHentenryck
[2005].

The vehicle routing problem is a great deal more complicated than for exgagket schedul-
ing, and stochastic distribution of the requests would seems infeasible to madéMMs or
the alike. Historic average lacks the ability to capture the structural properdtigne distribu-
tions, so instead the approach of historical sampling is taken. This is deganithe following
section.

8.1 Historical Sampling

As mentioned above, the VRP is significantly more complicated than a problemdikeeip
scheduling — consequently it is very hard to model the stochastic distributiibe wariables
using a HMM. In principle, historical averaging could be used, but it oot be able to
capture the structural properties of the distributions, such as customigiisgalate in the day,
etc.. Rather, the approach of historical sampling seems very suitableptariog the properties
of the VRPTW [Bent and Van Hentenryck, 2005].

The idea of historical sampling is to take entire instances from the past anthese as
samples. The algorithm for historical sampling for the VRPTW is given in Algor 20. It
takes a pool of past instances along with the current tirttee set of visible real customers that
have not yet been served by the current plan, as well as the cptaent.

In line 1, a plan is selected at random from the pool of past instance® 2 prunes the
instance for all the customers that have earliest service time before {imeare in the past) or
not reachable from the current plarbefore their latest time of service. To take the real requests
that are already visible, but have not been served yet, into accoungntimiant of customers

73

8.2. EXACT SAMPLING

(|R|) are removed from the sét This gives the expected amount of customers that still remains
to become visible. The sét of customers is finally returned as the sampled set. With this
approach, the time of day customers appear is taken into account andtcreample of the
remaining customers is obtained.

Algorithm 20: Historical Sampling
Data: Pool of historical instances((), current time {), set of unrouted real customeRs
current plany.
Result Set of sampled customesfs

v, «— Select random instance froify,
S « customers: € v with e(c) > t, and reachable by beforel(c);
for i — 1to |R| do
S «— S— random customey € S;
end
return S;

o g A~ W N P

There are several advantages of historical sampling. First of all, ttasndthbe available, or
can be made available very easily for most applications. It is very simple to impteng yet
is able to capture structural properties of the problem, like customers inincaréas appearing
late, specific times of day that are particularly busy, etc..

A potential extension to historical sampling is to split the historical instances irferetift
classes. As an example, a taxi service will most likely have different disioiis and amounts
of requests in weekends and weekdays. This can be modeled by splittipgahef historical
instances into two classes; weekend and weekdays. If the day cutveirtty solved is a week-
end, only the pool of weekend instances is sampled. Of course, this loedidther split into
holidays, special events, etc..

An interesting consideration in connection in relation to historical is how martgridal
instances need to be available before the historical sampling is able to gigeegults. This is
tested in section 9.5 along with a comparison to exact sampling.

8.2 Exact Sampling

For this thesis, an exact probabilistic model is available in form of the instemoplate de-
scribed in section 5.2. As mentioned, this is not realistic in practical applicatiomhsaving it
available for this thesis serves as a basis for assessing how well théchistampling performs,
both as a mean of comparison and by being able to create “historical instarid¢es can be
done by sampling instances using the instance template and adding thisXtiqpti@. This is
repeated until the pool has the desired size.

74

9 Solving the Online Stochastic Vehicle
Routing Problem

After having described the model and algorithms for the online stochasticleebuting, we
can now look at their performance. In this chapter different aspediseodfilgorithms will be
examined, to see how they perform when presented with various difficuitiéise end, a com-
parison will be made between the oblivious online algorithms, the Online StichAdégorithms

and the offline algorithm ABHC. This gives us a scale to evaluate the peafore of the On-
line Stochastic Algorithm on, and furthermore conclude if there is any gaisiimgstochastic
information to guide the algorithm.

9.1 Test setup

To evaluate the Online Stochastic Algorithms, the benchmark instances @elscrgection 5.3
are used. A real life time horizon of 30 minutes is given for the solving of ataice, plus 5
minutes for the initial generation of plans, based on customers that arebdev&itan timet = 0.
As previously described, the 30 minutes time horizon allows 3 seconds perémisthe 180
instances, and 10 seconds for the 600 instances. This, of coursetidens than the algorithms
would have in most practical use, where the real life time horizon would &fte® hours. To
compensate for this, as described in section 5.3, the instances weredmmaledo solving one
of the generated benchmarks in the 30 minutes available would be somewhat &imiking a
realistic instance on an 8-hour time horizon. If nothing else is describethdtaces are made
online using the online class 3 of Table 5.2, described in section 5.4, page 38

For all the Online Stochastic Algorithms, the initial solutioms< 0) are generated using
the Impact algorithm, followed by a run of Ejection Chains and ABHC with Béist From
this point, the solving of sampled instances is done by Ejection Chains folloywdteABHC
with Best Fit. If nothing else is specified, the ABHC has a maximum of 10 sectnsblve an
instance.

The testing was done on the computers of IMADA, University of Southeenribark. These
are Intel Core2 6300 (1.86GHz) processors with 2GB of memory.

All the times measured are CPU-time.

9.2 Regret Customers

As described in section 4.4, it was not clear from the papers of Van Higmate and Bent for
which customers regret should be calculated — for the current route afigtomer or the entire

75

9.2. REGRET CUSTOMERS

Tuning of Regret Calculation with Discretion size 24

R route
R plan A

RR route
RR plan
RR route (sampled) y

3000 —

1oxthe

2500 —

RR plan (sampled)

2000 —

Objective Value

1500

1000

500

T T T T
180LOOSE 180TIGHT 600LOOSE 600TIGHT

Instance

(a) Results of the Regret algorithm having different strategies for leglon of regret.
Run with a discretization size of 24

Tuning of Regret Calculation with Discretion size 35

R route

R plan

RR route

RR plan

RR route (sampled)
RR plan (sampled)

4000 —

1otde

3000

2000

Objective Value

1000 —

T T T T
180LOOSE 180TIGHT 600LOOSE 600TIGHT

Instance

(b) Results of the Regret algorithm having different strategies for lon of regret.
Run with a discretization size of 35.

Figure 9.1: Graph of the Solution Quality of the Regret Algorithm, Run with Different Types of
Regret Calculations: These differ in which customers the regret is calculated fbne
figures show results for the four generated benchmark iosganResults are connected by
lines to make the performance of the algorithms more cleathfe reader. Figure 9.1(a)
shows results for the algorithm, when the discretizatiae $ set to 24, and Figure 9.1(b)
show for discretization size of 35.

routing plan. Moreover, when using the Relocation strategy, it needs ¢orsdered whether

regret should be calculated for sampled customers also.
To decide this, different settings of the Regret algorithm were comp&@degular Regret,
the regret was calculated for real customers in the route and for retalcars in the entire plan.

76

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

Regret with Relocation was tested with regret-calculation for both all arébrda customers
in the route as well the plan. The different settings were run on the foergeed benchmark
instances described in section 5.3. This was done with a discretization offid4jaod 35. This
means that the map is split into 24 and 35 units for each axis, yielding 576 @3ddistrete
areas (see section 4.6.1). The results are presented in Figure 9.1. |égehds RR denotes
Regret with Relocation strategy afgampled)means that regret is also calculated for sampled
customers. The cost of having an unassigned customer in a routing ptnas€00. The exact
solution values are given in text in Appendix A.2.

Looking at the standard Regret algorithm (without Relocation), calculagigpiget for only the
route (marked in blue) outperforms normal regret calculation for the pladl instances but
180LOOSE.

Turning to the Regret algorithm using Relocation (RR), the results aresrai¢ar. As can be
seen, it is preferable to calculate the regret from the route only, buteht® include sampled
customers in this calculation is unclear, and seems to be dependent otiziiforesize. The
choice was made to include sampled customers in the regret calculations.e&his satural
since Regret with Relocation considers real and sampled customersaglidlimakes sense to
do this in the calculation of regret also.

9.3 Size of Discretization

Section 4.6.1 describes the idea of discretization of the map. As opposegtsidibns of the
map being unique, ranges of positions are grouped into areas and theestatihastic algorithms
consider these as one unit when calculating consensus, etc.. Sincesmmbtadpositions are
used in this thesis, on a map of 70x70 units as the generated benchmangsiadiscretization
would be similar to discretizing the map with 70x70 areas containing one disasitep.

Discretization is only examined for the Relocation variants for ConsensuiRagret, since
only these allow consensus for sampled customers and hence are theesliymake sense to
use discretization for.

For examining the effect of discretization, runs were made with 10, 183%24nd 70 splits
per axis. This gives areas of, 42, 32, 22 and1 discrete positions, respectively. Each setting
was run once on each of the four generated benchmark instancesesttis are displayed in
the graphs of Figure 9.2 and the numeric results are given in Appendix A.3.

Although the Regret algorithm using Relocation get very similar results withxa(drénd
24x24 discretization, the setting of 24x24, ie. 9 positions per area,rpesfbest in all cases
but one (600TIGHT) in which 70x70 performs best. The regret wésutsted for the route
including sampled customers.

For CR the results are less clear. A discretization of 10 and 18 finds gsatts for the 180
and 600 instances, respectively. The explanation could be the stiyatoparties of the two
classes. Recall that the two 180 instances have the same positions fonexsstand so do
the two 600 instances. Possibly these two positionings are fit for a disti@tizd 10 and 18,
respectively. Even though a setting of 35 does not give the best ressalty run, it seems to be
more stable than the others - it might be that it is not as affected of the stwdttire customers.

It is difficult to asses what setting of discretization is best, based on onlgtdrices, that

77

9.3. SIZE OF DISCRETIZATION

Tuning of Discretization Size

CR 10x10
CR 18x18
CR 24x24
CR 35x35
2500 — CR 70x70

3000 —

kit

2000 —

Objective Value

1500 —

1000 —

500 —

180LOOSE 180TIGHT 600LOOSE 600TIGHT

Instance

(a) The effect of different discretizations for the Consensus algorithing Relocation.

Tuning of Discretization Size for RR

RR 10x10
RR 18x18
RR 24x24
RR 35x35
RR 70x70

3500 —

kit

3000

2500 4

ective Value

2000

J

Obj

1500

1000 —

500 —

T T T T
180LOOSE 180TIGHT 600LOOSE 600TIGHT

Instance

(b) The effect of different discretizations for the Regret algorithingiRelocation.

Figure 9.2: Results of Different Degrees of Discretization The graphs show the solution quality of
the Regret and Consensus algorithms with Relocate run ogetherated benchmarks with
different degrees of discretization. These are run on the denerated benchmarks. The
numbers in the legend, describe the number of areas the nsgiitinto. The weight of
unrouted customers are set to 1000.

only have 2 different positionings of the customers. Furthermore, a mapsofall size like
70x70 units, in which the customers can only be placed in discrete (integgtioms, the effect
of discretization might not be as clear. The discretization size is likely to deperihe size
of the map. A map of size 500x500 with discrete, or even continuous positon&ining 100
customers could lead to a different setting and give a clearer picture effétot of discretization.
In any case, it is obvious from the results that discretizadioeshave an effect compared to not

78

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

discretizing, and furthermore this effect seems positive.

It would definitely be interesting to compare the effects of discretization oiggeb map,
and possibly with continuous positioning, or on more instances, to get a neargmage of its
effect and a better idea of what degree of discretization is suitable feratit map properties.

9.4 Sampled Solutions: Quality vs. Quantity

For the Online Stochastic Algorithms described in this thesis, a very importeris plae offline
algorithms. While it is obviously desirable to have an efficient algorithm findliigéy quality
solutions, the balance of the quality and quantity of sampled solutions is nigtzais ¢

If the offline algorithm is given short time to run, this will allow the Online Stoditasl-
gorithm to generate and solve more instances. When many sampled instemcedvad, a
better statistical basis will be available for the online stochastic algorithm. Orthlee lband,
the Online Stochastic Algorithms base their decisions on the routing plans byuth@ offline
algorithms, and if these are of low quality, this might be reflected on the soli8i@ring only
few sampled instances but doing so thoroughly, will let the Online Stochalgtirifam base its
decision on good routing plans, but few of these mean that the statistiéaftiathe decisions
is not as good.

To examine this, a comparison of the Online Stochastic Algorithms run with ditfesttings
of the offline algorithms is needed. Since the real life time horizon is set to 30-@iAutes
(excluding 5 CPU-minutes of sampling and solving instances with the customanglat time
0), 10 CPU-seconds are available per time step for the 180 instancesnlsr®@l CPU-seconds
for the 600 instances. For this reason, the testing of quality and quantigngdled solutions
was made only on the 180 instances, since this allowed the offline algorithmsiaguime of
up to 10 seconds. Five different offline settings were tested. A simpleMesas used as the
fastest offline algorithm. Besides this, 4 different settings of ABHC westetke with 1.5, 3, 6,
and 10 seconds of running time, respectively.

9.4.1 Results

The Consensus(C) and Regret(R) algorithms were run with a discretiz@mof 70x70. Their
Relocation variants CR and RR, were run with discretization sizes of 35x324x24, respec-
tively.

The results of the runs are compiled in Table 9.1. In terms of C and R, it isttlaagood
quality of solutions is to prefer over quantity. For both the loose and tiglsiams of the 180
instances, the best results were found with a setting of 10 seconds #BHE.

The results for the algorithms using relocate are not as clear. In two, @aBEKC with 1.5
second of running time performs best, while Best Fit gives the best fesiRR on 180LOOSE
and ABHC with 10 seconds finds the best solution for CR the 180TIGHTnnstalo examine
this further, the comparison was reproduced for the 600 instancese Biese allow no more
than 3 seconds of running time per time step, only the settings of Best Fit akilCABth 1.5
and 3 seconds running time could be tested. In terms of C and R it seemeftatediable 9.1
that it was desirable to give them a long running time, so there was no neetudédrthem in

79

9.4. SAMPLED SOLUTIONS: QUALITY VS. QUANTITY

180LOOSE
Best Fit ABHC 1.5 ABHC 3 ABHC 6 ABHC 10
C 3 903.98| 2 846.90 | 1 928.33| 1 888.67| 0 918.12
R 4 895.18| 1 942.76 | 1 1028.75| 2 953.57| 1 921.83
CR || 2 114482| 1 1060.23| 2 1100.63| 1 1086.77| 2 1086.71
RR || 1 1173.39| 2 1077.85| 2 1114.12| 2 1136.24| 2 1138.82
180TIGHT
Best Fit ABHC 1.5 ABHC 3 ABHC 6 ABHC 10
C 3 100477 0O 1030.99| 0O 1018.64| O 1027.01| O 1018.20
R 3 1026.82| 0 1054.86| 1 1014.16| 1 1014.31| 0O 1053.65
CR || 3 111741 0 1211.64| O 1128.98| 2 1157.60| O 1111.30
RR || 3 1142.40| 0 1152.99| 0 1223.40| 2 1196.63| 1 1200.39

Table 9.1: Results of the Online Stochastic Algorithms wittDifferent Settings of Offline Algorithm:
This table displays the results of the regular Consensusf@)Regret (R) algorithms and
Consensus with Relocation (CR) as well as Regret with RétmtdRR) run with different
settings of offline algorithms. The 1.5, 3, 6 and 10 denotesniaximum allowed running
time of the ABHC in CPU-seconds. Obviously all the time aadlié in a time step is used
to generate and solve instances. Consequently ABHC 1.kefy/lto be run many more
times than ABHC 10. In each cell, the left number denotes wesecustomers, while the
right number is the length of the routing plan. Best resulesraarked with bold types. The
displayed results are for the instances 180LOOSE (top) 8Q@IGHT (bottom)

the test on the 600 instances. For the Relocation, in 3 of 4 cases, thesdst were found
when the offline algorithms had a short running time, so it makes sense to extmsirfiurther
on the 600 instances, to make it more clear what setting is preferable.

The results for the 600 instances are presented in Table 9.2. As in thaf tasd 80 instances,
for the loose version, RR finds the best solution using Best Fit followedBiyC 1.5. In all
other cases, ABHC performs best with a setting of 1.5.

A possible reason for the difference in choice of offline algorithm forrggular C and R
algorithms, as opposed to their Relocation counterparts, could be therdigpry on sampled
customers. As mentioned above, more sampled instances gives a begsentgtion of this
distribution, and hence allows Relocation to serve more relevant samplestegular C and
R only serves real customers, and while sampled customers affects thisiods, it comes
down to which real customer is next on a route. Therefore, C and R magirtdse tolerant of
unrepresentative samples.

600LOOSE
Best Fit ABHC 1.5 ABHC 3
CR || 0O 72194 0 69088 0 759.41
RR || O 747.85| 0 794.26| 2 710.81
600TIGHT
Best Fit ABHC 1.5 ABHC 3
CR || 3 926.76| 0 853.22| 0 892.01
RR || 2 849.37| 1 821.89| 1 847.47

Table 9.2: Table Displaying the 600 Instance Counterpart offable 9.1: Best results are marked with
bold types.

80

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

Avg. Obj. Value for Generated Plans for C on 180LOOSE

C Best Fit
-- CABHC15
—— CABHC 10

Objective Value
1000 1500 2000 2500 3000 3500 4000

T T T T
0 50 100 150

Time (1)

Avg. Obj. Value for Generated Plans for CR on 180LOOSE

-+~ C Best Fit
-- CABHC15
— CABHC 10

Objective Value
1000 1500 2000 2500 3000 3500 4000
|

T T T T
0 50 100 150

Time (1)

Figure 9.3: Solution Quality for Sampled Solutions: Graphs showing the average objective value of
the sampled and solved instances over the time horizon.véoy three time step, an average
of the objective functions of the plans generated and salueithg these time steps is shown.
This was done to smooth the graph out. The results are of fuhe & and CR algorithms
run on the 180LOOSE instances. Unassigned customerstmatetrvith 1000 to the objective
function.

9.4.2 Further Examination

When examining the effect of quality and quantity, it seems relevant to |Iable aictual solution
qualities found by the different algorithms over the course of executionexample of these
are displayed in Figure 9.3.

For the C algorithm, the solutions generated by Best Fit (Descent) aréomfierough the
entire run. The two ABHC settings are more equal until around time 50, wiBHiCA10 gen-
erally manages to insert 1 more customer customer into the route. As canrhd3setFit is

81

9.4. SAMPLED SOLUTIONS: QUALITY VS. QUANTITY

Plans Available for C on instance 180LOOSE

15000
I

— CBestFit
—— CABHC15
—— CABHC 10

10000
I

Plans Available

5000
I

Plans Available for CR on instance 180LOOSE

15000
I

— CBestFit
—— CABHC15
—— CABHC 10

10000
I

Plans Available

5000
I

0 50 100 150

Time (1)

Figure 9.4: Quantity of Sampled Solutions: Graphs showing the number of plans available over the
course of time for instances 180. Unassigned customersiloatet with 1000 to the objective
function.

generally more smooth than ABHC 1.5 which is in turn more smooth than ABHC 18ciedly
in the beginning of the timespan. This is due to the many more plans generatesl BgghFit
algorithm.

The picture is not as clear for the CR algorithm, where the three offlineitdgw are more
equal. At around time 120, ABHC 10 and Best Fit generally fails in servingpte customer
than ABHC 1.5.

It should be mentioned that when running ABHC 10, for example, the algonithil not
necessarily have a full 10 seconds to run. Sometimes, only little time will be left foom
calculation of Consensus, pruning, etc.. This could explain the very ddadons that seems
to be found in the early time steps from ABHC. Since, in this period, there rdyetione for
around one optimization, in case of ABHC 10, a very bad solution will haveat gffect on the
average objective value. As we move forward in time, a greater part @lans will be locked,
and therefore the ABHC will often be done withing the 10 seconds. Towergthe fluctuations
are not as big late in the graph as in the beginning.

Besides the quality of the solutions, the quantity of sampled and solved instarngiet have

82

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

an effect on the solution. The results are displayed in Figure 9.4. As tmukkpected the
pool of plans available for Best Fit is generally larger than that of ABHE; Which is in turn
generally larger than that of ABHC 10. At many points during the run of tgeraghm, the
plans available suddenly becomes smaller. This is due to decisions being onaate itlle
vehicle. When this happens, the plans that do not agree with this decisipnuered.

There are a few curiosities in connection to the graphs of Figure 9.4. d¥igdl, it seems
like the generation of plans stops at around 130 (earlier in the case bFBesThere could
be several reasons for this. At this point, all or most of the routing planbeifixated, and so
the freedom for the offline heuristics become very small or non-pre3érgrefore generating
and “solving” an instance, is as easy as sampling it from the instance templaie.might
allow for generation of many plans (10 thousand+). A possible explangt&imo more routes
are generated, is that, at every time step, the sampled routes have to ke dicabeding to
the current time. While this is generally very fast, having to do this for 15000 plans might
be time consuming, and hence allow little or no time for generation of new plansteddr
reason, one would have expected the pool size to grow increasinglyd®ittee end. While this
is unfortunate, it should not have any significant effect on the solutiatity since the basis for
making decisions should be sufficient with 10.000+ plans.

The other curiosity is the behavior of Best Fit, when looking at the CR alguorith takes
some dives from 20.000+ plans, down to as few as 1 plan towards thd #émltanespan. The
same pattern emerged for RR, while not for R. Note that vehicles do not toaepot until
necessary. Therefore, the Consensus of a vehicle could be on kedatagtomer, even though
all but one plans agrees on the depot. This could be a possible explafatitne dramatic
pruning. After a great dive in the quantity of plans, the pool is quickly fileeé to a great part
of the plan being fixated, resulting in very fast generation and solvin¢poip

9.5 Historical Sampling

As described in section 8.1, exact stochastic knowledge of the instarareligavailable in real
life applications. For this reason, alternative methods have to be usedagpneach would
be to use historical sampling, which is what is tested in this section. In real ifec#m be
obtained simply by using historical instances (data from previously sohatarioes). In context
of this thesis, “historical data” is generated by sampling full instances fn@melevant instance
templater times, wherer denotes the number of historical instances that should be available.

The greater the amount of historical data available is, the closer one wqeédt¢o come to
the actual exact stochastic properties of the instance. This means, ittesltite more historical
data that is available, the better solutions the algorithms should be able to find.

For testing the historical sampling, the algorithms were run with pools of 1,00),ahd 1000
historical instances available. Furthermore, results using the exacastmcmodel (instance
template) were found as a base of comparison.

The results are shown in Figures 9.5-9.8. The exact numbers of thea@pesults are given
in Appendix A.4. Overall there is a pattern of better solutions being fourehwhore historical
data is available, but not as consistently as one would have expectextidtigpthe two Regret
algorithms behave oddly. At very small amounts of historical data (1 andrie gdegree, 10), the

83

9.5. HISTORICAL SAMPLING

quality of the solution found will naturally be very dependent on whethehisterical instance
happens to be very similar to the instance being solved, in terms of time windogi§pps,

etc.. If this is the case, good results will be found, and oppositely, if therluatanstances are
far from the instance being solved bad solution will be found. When ieg&hpool size of 100
or more, the probability of getting an “unlucky” or “lucky” pool of samplescbmes negligible.

Historic Sampling on 180LOOSE

6000 —

5000 —

4000

Objective Value

= 3000 —

2000 —

1000

T T
Historic 100 Historic 1000 Exact

Historic 1 Historic 10

Sampling Type

Results on 180LOOSE Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historicalngpling on different amounts of
historical data. Results of precise sampling is also diysaldor comparison.

Figure 9.5:

Historic Sampling on 180TIGHT

10000
C

CR
RR

XXX

8000 —

6000 —

Objective Value

4000 —

2000 —

Historic 10 Historic 100 Historic 1000 Exact

Historic 1
Sampling Type

Figure 9.6: Results on 180TIGHT Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historicalngpling on different amounts of
historical data. Results of precise sampling is also diysaldor comparison.

84

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

Figure 9.7:

Figure 9.8:

Historic Sampling on 600LOOSE

KXX:

CR

4000 RR

3000

Objective Value

2000 —

1000 —

Historic 1 Historic 10 Historic 100 Historic 1000 Exact

Sampling Type

Results on 600LOOSE Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historicaingling on different amounts of
historical data. Results of precise sampling is also diysaldor comparison.

Historic Sampling on 600TIGHT

3000 —

2500 —

2000 —

Objective Value

1500 —

1000 —

Historic 1 Historic 10 Historic 100 Historic 1000 Exact

Sampling Type

Results on 600TIGHT Using Historical Sampling: The figure shows the results of the
Online Stochastic Algorithms using different historicalhgpling on different amounts of
historical data. Results of precise sampling is also dygaldor comparison.

85

9.6. COMPARING WITH OFFLINE AND ONLINE ALGORITHMS

If more time had been available for examining the properties of historical sagn i@ algo-
rithms could have been run multiple times with other “historical data” (differeotgof 1, 10,
100 and 1000). This would help draw a clearer picture of the effectstuftical sampling.

In any case, from the results displayed in the figures, there is a tendéfiegling improving
solutions the more historic instances are available, and in the most caseg égvia basis
of 100 historical instances results in better solutions than having a singleitastomstance
available.

9.6 Comparing with Offline and Online Algorithms

This section compares the Online Stochastic Algorithms with the oblivious onlineithios

and the offline solution. This is done in the 5 different online classes ofriceta described
in Table 5.2 (section 5.4, page 38). The idea is to evaluate how the differdime Stochastic
Algorithms perform compared to each other, the online algorithms and thesddfhition, and
furthermore to examine the influence of the number of dynamic customers irsthade solved.

The offline solutions are produced by the ABHC algorithm. The ConsearsifRegret algo-
rithms without Relocation were run “without” discretization (that is, a discrétmeof 70x70
squares, giving one discrete area one position, which is still a venhrdisgretization com-
pared to continuous positionings of customers) and the ABHC at a 10 €Bduhds time limit.
Their Relocation counterparts were run with a discretization of 24x24 &r853 respectively,
and both used ABHC with 1.5 CPU-second running time as offline seardegwoe. For all
the Online Stochastic Algorithms, exact sampling was used (that is, samplingydfrem the
instance template, as opposed to using historic sampling).

The online algorithms examined are the NN, NI and LO algorithms describedaptéhn?.
The NN algorithm was also used by Van Hentenryck and Bent, as well atgarithm very
similar to the LO algorithm implemented for this thesis.

The number of vehicles available for the instances were found by a ran offline ABHC
using the objectivev; () (see equation (2.7), page 8), in which the number of vehicles is min-
imized. This means, that for each instance, one vehicle less than repofioléns.1, page 36
is available.

Since Consensus, Regret and their Relocation counterparts areddapen samples, which
are stochastic elements, each algorithm is run 7 times for each instancetarg] sefind their
average performance. The results reported in this chapter is the meanofdheir solution
value. While this gives a clearer picture of their average performancee sletails are lost in
the algorithms stability, eg. one algorithm could be finding very good solutioagfird of the
time, while another could be stable at finding average solutions.

The results are shown in Figures 9.9 and 9.10. In the reported objaatigedns, unassigned
customers contribute with 1000 to the objective function. The exact vafitbe golutions are
given in Appendix A.5.

Oblivious Online Algorithms Looking at the oblivious online algorithms, NN is in gen-
eral finding better solutions than LO. These are both inferior to the NI, tie@© Stochastic

86

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

Algorithms and offline algorithms. In general NI is performing very well, a@iges the best
result following the offline algorithm in one case.

In general, the LO algorithm produces bad solutions. In all cases utanmiine class 5
for the 180TIGHT instance), it performs worst of all the algorithms exadhina particular,
relative to the other algorithms examined, it seems to be performing bad forodee ilustances,
ie. instances with large time windows. Furthermore, the LO algorithm seemgwieignced by
the number of dynamic customers. This also makes sense, in that the algaaghmits choices
only on the known customers, and having fewer of these available is likekstdtrin worse
solutions.

As mentioned Nearest Neighbour (NN) performs better than LO, but iergemanages to
place at least one less customer in the routing plans, compared to the otréhalg. It is not
as affected by the degree of dynamic as LO, but this due to the algorithbeimgf as dependent
on the number of visible customers as LO.

As opposed to NN and LO, the Nearest Insertion algorithm performsisungly well and is
competitive with the Online Stochastic Algorithms. In a single case, it finds thesbasion
(class 5 for instance 600TIGHT) following the offline algorithm. Relative ®o@mline Stochas-
tic Algorithms it seems to be better at handling short routes (few customeoyt&) than long
routes (many customers per route). Considering only the oblivious orgioetams, this is by
far the best.

Online Stochastic Algorithms Unlike the case of the oblivious online algorithms, there
is no obvious pattern in which Online Stochastic Algorithm is best - it varias frsstance to
instance and from online class to online class.

Looking at the Consensus and Regret algorithms not using Relocationd®)a the Con-
sensus algorithm is generally superior to Regret, with the exception ofdhboxinamounts of
dynamic customers (online class 1 and 2) on the instances with short rihed<80 instances).

The Relocation counterparts of Consensus and Regret (CR and WRegs obvious results.
Disregarding 180TIGHT, CR generally performs best. For 180TIGRR,is superior for all
online classes. Besides this, there seems to be no generel pattern pgedhith algorithm
performs better than the other.

In most cases, not using Relocation seems to be preferable, but thisnigetlefiot conse-
guent. As an example, in the online class 5 for both the 600 instances, thid @ @gorithms
perform worse than their Relocation counterparts.

These results are not consistent with those of Van Hentenryck and Betiteir book, the
reported results are that in general R is to prefer over C, and RR srpbdéé over CR. Further-
more only with very low amounts of dynamic customers are the C and R algoritipesicu
to their Relocation counterparts. When a great part of the instance isnityrthe Relocation
variants are much superior to C and R. There can be several reasdhis inconsistency. The
instances the algorithms were tested on are not the same, and maybe moreritiyptireapre-
cision of the stochastic knowledge might be different. If Van Hentenryuk Bent eg. have
very exact stochastic knowledge and very high probability for “gugssiarrectly when sam-
pling customers, this could greatly affect the efficiency of the algorithm, aemrecisely, the
feasibility of the Relocation algorithms. Besides this, differences in pergepfithe algorithm

87

9.6. COMPARING WITH OFFLINE AND ONLINE ALGORITHMS

details, and consequently implementation, could obviously be a reason fdiffdrences in
result.

Comparing the Online Stochastic Algorithms to NI, the Consensus algorithm wiiteda-
cation is preferable over NI in most cases. For the online classes 1{&rfdrms best on the
180LOOSE instance, as well as on the online class 5 on both the 600 irsstima# other cases
the C algorithm is superior.

88

CHAPTER 9. SOLVING THE ONLINE STOCHASTIC VEHICLE ROUTING RBBLEM

Algorithms Run on Online Classes for 180LOOSE

20000
L

15000
L
-
o

—— OFFLINE

Objective Value
10000
|

5000
I

Online Class

Algorithms Run on Online Classes for 180LOOSE

o
s
o
© - C
—e— R
3 B —— RR
LO
NN
) § | —s— NI
g 5 —6— OFFLINE
[
=
-
2 ®
o
o
S |
S
~N
(=]
o
o
=

Online Class

(a) Results for the 180LOOSE instance. The upper figure shows allghetams and their
solution values. In the lower, the y-axis is limited to a maximum of 6000 to makeetbults
more clear for the algorithms performing well.

Algorithms Run on Online Classes for 180TIGHT

7000

C

R

CR

RR

LO

NN

NI
OFFLINE

bhee

5000
|

7

Objective Value
4000

3000
¢
\
s
\
\
\
\
&
|
&
/

%

2000
|

Online Class

(b) Results for the 180TIGHT instance.

Figure 9.9: Comparison of the Algorithms on the 180 Instancs: The figure shows a comparison of
the Online Stochastic Algorithms to the oblivious onlingaithms and the offline value for
the 180 instances.

89

9.6. COMPARING WITH OFFLINE AND ONLINE ALGORITHMS

Algorithms Run on Online Classes for 600LOOSE

8000

6000
I

—— OFFLINE

Obijective Value
4000
|

2000
L

Online Class

Algorithms Run on Online Classes for 600LOOSE

2500
|

C

R

CR

RR

LO

NN

NI
OFFLINE

IXXE:

7

Objective Value
1500

1000
|

500

Online Class

(a) Results for the 600LOOSE instance. The upper figure shows allghetams and their
solution values. In the lower, the y-axis is limited to a maximum of 2500 to makeetbults
more clear for the algorithms performing well.

Algorithms Run on Online Classes for 600TIGHT

6000

C

R

CR

RR

LO

NN

T o— NI
OFFLINE

XXX:

¢

Objective Value
3000
I

2000

1000

Online Class

(b) Results for the 600TIGHT instance.

Figure 9.10: Comparison of the Algorithms on the 600 Instanes: The figure shows a comparison
of the Online Stochastic Algorithms to the oblivious onladgorithms and the offline value
for the 600 instances.

90

10 Further Extensions and Perspectives

In Van Hentenryck and Bent [2006], it is mentioned that the results on ©8liachastic Vehicle
Routing took them five years to derive. Although this is not comparable to temgmting their

algorithms, the time spent on implementation of the basic framework for the Onlicbesto
tic Algorithms was very extensive, and left much less time for examining andheixig the

algorithms than could have been desired.

The choice of extension was discretization of the map, as this was thoughtamhtural
and useful addition to their algorithms. But there were several otherrésstioat would be both
interesting and useful to implement. This chapter describe these extensibhewa they could
have been achieved.

10.1 More Extensive Testing of the Algorithms

Generally speaking it would have been desirable with more thorough te®ung to the long
running time of the algorithms, this was not feasible — only a limited amount of testasy w
possible. Furthermore, since no benchmarks with stochastic informati@navailable, these
had to be implemented to challenge different aspects of the algorithms.

Only four different instances were used in the testing of the Online Stich@gorithm.
This greatly limited how well the algorithms could be tested. Having too much varietithe
properties of the instances would make it hard to deduce what propdrtlesinstances affect
the algorithms in what way. Having too little variation would not give a fair picturecov well
each algorithm perform in general.

The focus was chosen to be on tightness of time window, length of time honmbnwamber
of customers in a route, which is what the constructed instances attempteadlémgh. Still, it
would have been desirable to test the effect of these properties everitmooughly, by making
similar instances only differing in a single or very few properties. Furthesmihe effect on
the algorithm of changes in other properties like positioning of customesasavith certain
properties, demand, etc would have been desirable to examine.

From section 9.6, the need for more instances to base conclusions anebelear. Here
the different Online Stochastic Algorithms were compared, but it was restipie to conclude
which algorithm performed best, nor under what circumstances ondthlgorvas superior to
others.

The implemented instance generator allows for different areas of the mavéeodifferent
properties for the customers. This could be used to test the effectsiofjfareas that differed
in lateness of requests, amount of demand, size of time windows, etc.. Agaiwould require
the generation of a series of instances with changes in only a few prggertigamine how well
the algorithms handle these.

91

10.2. IMPROVEMENTS IN IMPLEMENTATION

The algorithms of Van Hentenryck and Bent were extended to be able tibeheantinuous
positions on the map by means of discretization. To further examine the effdidcretizing
the map, it would have been interesting to compare the algorithms on instance®mitiuous
positioning to the use of discretization on them.

10.2 Improvements in Implementation

The most CPU intense part of the Online Stochastic Algorithms is the generatipmapartic-
ular, solving of instances. While it might not be a problem on smaller instatikeghe ones
solved in this thesis, it could be a problem getting a sufficiently large po@mopsed solutions if
the instances are large and very time-demanding to solve. As the Online Stodigorithms
base their decisions on this pool, this is a relevant issue to address.

Parallelization: Since the sampled instances can be solved independent of each ather, pa
allelization is an obvious solution to this problem. As an example of how this cowddtieved,
we have a server and client machines (or CPUs). The clients samplegeig solutions at
all times, sending solved instances to the server process. Whenevahsant@ppens that the
clients need to take into account, like a new request or change to the mastethglalients
are notified, and take this change into account for subsequent sammdirsplaing of instances.
The server process is responsible for finding Consensus, prurdmmptil, etc.. The only thing
the client processes do is generating plans. Gendreau et al. [1989jnhplemented a parallel
tabu search for the dynamic VRP, in which a pool of solutions, based dheallisible cus-
tomers is maintained. The solutions of the pool are continuously optimized rentdy by the
clients and consulted by the server process when decisions have to be & work could
be used as a starting point when considering a parallel implementation of lime Stochastic
Algorithms.

There can be several gains of generating and solving plans conttyrrEirst of all, more
plans can be generated, since more processing power is available,dieing the algorithms
an improved base for making decisions. When dealing with large instanaaght not be
possible to find good solutions within the timespan of a single time step. When distgibu
the job of solving the sampled instances to other processors, these cdowseldo span over
multiple time units, as long as no new customers arrive or addition of new custaméne
master plan occurs. This means that the offline algorithm has time to find ghdibss even
on large, time consuming instances.

Solving Across Time steps: Allowing the solving of plans to run across time steps is
possible without parallelization. For this, the optimization would be allowed tomimierrupted
until either a new request is made or a vehicle is idle. The next idle time of aleetiknown
with certainty every time a customer is assigned to it. In terms of new requestisheo way

of foreseeing this exactly, so some type of interrupt function would habe ioplemented to
notify the algorithm that it has no more time to solve instances. Furthermore|gtettam
would have to keep track of the current time,during optimization, so no illegal moves are
made in the optimization.

92

CHAPTER 10. FURTHER EXTENSIONS AND PERSPECTIVES

10.3 Extensions to the Algorithms

Solving Large Instances: The instances solved in this thesis only contains 50 customers.
In a real life application instances would often be many times bigger. SinceRei¥in the
class of NP, a big increase in size would lead to a dramatic increase in rutmigg If the

size of the instances to be solved are too big to find reasonably good ssliurtitre available
timespan, a solution would be to only sample a part of the time horizon. So if thent@ime

is t, one could sample until time+ = and only consider the customers that need service in the
nextzx time units. This obviously decreases the instance size and (depending sinetodz)
allows the algorithms to find good solutions within the allowed time. Since only a pénreo
time horizon is considered, in the end, the solutions might not be as good aseifitine time
horizon was considered, but it allows to solve much bigger instances (owmtymers). This
principle can also be applied to handle problems in which there is no finite timeohoiiz the
instance is continuous.

Switching Offline Algorithm: Throughout the execution of the algorithm, increasing parts
of the solution will be fixated (namely the part preceding titheThe remaining part, that has
to be solved, obviously becomes smaller and consequently faster to spitmmabsolvers have
been considered infeasible as a sub-procedure to the Online Stochigstiitidns due to their
long running times compared to heuristics. But at some point in the executitre @nline
Stochastic Algorithm, the remaining part of the instance to solve will be suffigismall, to

let optimal solvers be used within the timespan allowed. Having the offline sehitch to a
branch and bound algorithm at some point in time, for example, would stanggbptimally
solved sampled instances, which could have a positive effect on the sajutdity of the master
plan.

Maintaining Large Pool size: A potential problem for the Online Stochastic Algorithms
described in this thesis is their dependency on the pool of sampled plamskimg decisions.
When this is very small, the decisions made by the algorithm will be worse. Tid avcall
pools one could attempt to generate more plans, by means of sampling onlypfoéugstime
horizon, making the instance size smaller, as described above or ugeraafgsrithm finding
solutions of lower quality.

Another strategy would be to attempt to minimize the number of plans pruned.adnste
pruning all the plans that do not agree with the change in the master plargthighen could
attempt to fit the sampled plans to these changes. As a simple example of this,ahthied
plan v, does not agree on the consensus of a route, the customgraufuld be attempted
replaced by the consensus customer, hence avoiding to prun@n of course has to ensure
that the consensus customer is not present elsewhegeand that the replacement is feasible
in terms of timewindows, etc.

This, and more elaborate schemes to fit the sampled plans to the choice efsummight
help the algorithm keep a bigger pool of sampled plans, and hence makedagitdons when
adding customers to the master plan.

93

10.4. EXTENSIONS TO THE MODEL

10.4 Extensions to the Model

In this chapter, mostly algorithmic and implementational improvements have besitlewu
but there are some extensions to the model that also would be interestingrtimex@hese will
be discussed here.

Moving from completely offline problems to the online stochastic VRP considerehis
thesis, is a big step in terms of being able to model real life problems more redlijstitavever,
as previously mentioned, it might not be realistic to know the service time, tieves, demand,
etc. as soon as the request is made. There might be delays in traffic deavy thaffic,
accidents, or the like. In terms of service time, it might not be possible to predicie arriving
at the customer. The same applies to demand. Including these uncertaintiesnodél would
be another big step towards making it more realistic and applicable in pragbiptations.
Due to the nature of the Online Stochastic Algorithms, this extension would bveglaeasy
to implement. Since the master plan is only extended when a vehicle is idle, theiexteha
visit (length of service time) for example, would only shift the time at which thdale is idle
and a new decision has to be made. There is not a plan extending the visithulichbecome
infeasible due to a prolonging of a visit (except of course if the visit elgers far as leaving too
little time to return to the depot within the time horizé). When a change in eg. travel time
occurs this is saved in the master plan and the pool of sampled plans is thmenl ffon those
that cannot conform to these new changes. This would of course megahetpool of sampled
plans would be pruned more often, leaving a smaller pool to base decisipwhich in the end
has a negative effect on the solution quality of the algorithm. On the othel; taanalgorithm
would be able to handle much more realistic problems. Besides this, the algohitadyahas
the functionality for a qualified guess on the properties of a customer (sagh@imd for coping
with changes in the properties of a customer (by pruning). This wouldftrerbe a interesting
extension to the model, that could be handled in a very natural way by theeC8tiathastic
Algorithms.

94

11 Conclusion

This thesis is based on Van Hentenryck and Bents work on online stochahtide routing
[Van Hentenryck and Bent, 2006]. It focuses on taking advantageohastic information when
solving the dynamic VRP. The algorithms described by Van Hentenryck and iBtroduce a
new approach, in which the unknown parts of the instances are samphegdtins stochastic
knowledge available. This has two advantages: it allows regular offlirmitdgs to be used to
solve the partly sampled instances, and secondly, if several of thesegaanpled instances are
solved, this can be used as a basis for guiding the vehicles througheaxettation.

For this thesis, a different offline algorithm than that of Van Hentenryuk Bent is used,
namely the Attribute Based Hill Climber (ABHC). Furthermore, the Online Stdahadgo-
rithms are extended to use discretization of the map, allowing the algorithms tte lrtamdinu-
ous positioning of customers. The results of the Online Stochastic Algorithimg discretiza-
tion and the ABHC are compared to the solutions found by three obliviouseoalforithms as
well as the offline solution to the instances. Since no instances with knowmestibeinforma-
tion could be found, these had to be generated. This is done by the usénstance template,
implemented for this thesis.

The discretization seems to have a positive effect on the solutions founde &nly four
instances were used for testing, a more thorough evaluation of the effidistretization would
be desirable. In particular, a comparison of the solution found by theitlgm with and without
the use of discretization on instances with a continuous positioning of thenoeitavould be
interesting.

Although the Online Stochastic Algorithms in general perform well, the resudtsame-
what disappointing compared to the impression one had from the book dfisatenryck and
Bent [2006], in particular because the discretization actually seems to imfitevalgorithms
described in the book. There can be several reason for the difeeiemesults:

e The implementation of the algorithm for this thesis could be less efficient thanftkah
Hentenryck and Bent.

e Although both the book and the articles of Van Hentenryck and Bent wansutted,
certain parts of the algorithms might have been misunderstood or misimplemehted, w
could lead to worse results.

e The instances the algorithms tested on differs from this thesis to Van Heckeang Bent.
This includes both structure of the instances, and the precision of samighifigrtunately
it has not been possible to reconstruct their testbase, based on tmedtior available in
the book and articles.

¢ In Van Hentenryck and Bent [2006], the Online Stochastic Algorithms weahg com-
pared to NN and an algorithm very similar to LO. These find significantly weosgtions

95

than NI used in this thesis, which this explains the difference of results oDthime

Stochastic Algorithms over the oblivious online algorithms. Still, this does not éxty
plain the difference in results, since the internal ranking of the Online &sbichAlgo-

rithms according to the solution quality they find is also different.

The question remains whether it is desirable to use Online Stochastic Algorithmntisef
solving an online VRP. As described, more thorough testing of the algorittoukiwe required
to answer this question properly, but based on this thesis, the answet iis thast cases it is.
In the end, it depends on how important it is to find good solutions, and hosh e one
is willing to spend on implementing the algorithms. An implementation of the framework of
the online VRP as well as the NI algorithm would take around a week or sdmptementing
an Online Stochastic Algorithm with pruning, sampling of customers, conseredaulation
etc. neeeded for it, would take significantly longer. Furthermore, thasiwacf the available
stochastic data has a big influence on whether the Online Stochastic Algorittoyséder over
oblivious online algorithms.

The ideas described in Chapter 10: “Further Extensions and Pexgs2atiight help make
the algorithm more efficient and furthermore extend their use to model dve Bore realis-
tic applications, and hence make them more suitable than a simple oblivious dgtimithan.
These are natural extension to the model and algorithms, that would béntemgsting to ex-
amine further.

96

Bibliography

P. Van Hentenryck and R. Ber@nline Stochastic Combinatorial Optimizatiofihe MIT Press,
1 edition, 2006.

M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Sobsietequalities applied to the
vehicle routing problem with time window®perations Resear¢h6(2):497-511, 2008.

M.M Solomon. Solomon benchmarks: Best known solutions identified by hiesris
(http://web.cba.neu.edu/"msolomon/heuristi.htm), March 2005.

J. Larsen Parallelization of the vehicle routing problem with time windowsstitute of Mathe-
matical Modelling, Technical University of Denmark, 1999.

B. De Backer, V. Furnon, P. Kilby, P. Prosser, and P. Shaw. Lseatch in constraint pro-
gramming: Application to the Vehicle Routing Problem. @onstraint Programming 97,
Proceedings of the Workshop on Industrial Constraint-Directed Sdhegl 1997.

R.W. Bent and P. Van Hentenryck. Scenario-Based Planning for Bailignamic Vehicle
Routing with Stochastic Customei®perations Researclhb2(6):977, 2004a.

R. Bent and P. Van Hentenryck. Dynamic Vehicle Routing with Stochasticeistg. Ininter-
national Joint Conference on Atrtificial Intelligenceolume 18, pages 1362-1363. Lawrence
Erlbaum Associates Ltd, 2003.

R. Bent and P. Van Hentenryck. The Value of Consensus in Online &tichischeduling.
ICAPS 20042004b.

R. Bent and P. Van Hentenryck. Regrets Only! Online Stochastic Optimizatider Time
Constraints. IfProceedings of the National Conference on Atrtificial Intelligenmzges 501—
506. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Psp$999, 2004c.

R. Bent and P. Van Hentenryck. A two-stage hybrid local search &véhicle routing problem
with time windows. Transportation Scien¢&8(4):515-530, 2004d.

R. Bent and P. Van Hentenryck. Online stochastic and robust optimizétiétroceeding of the
9th Asian Computing Science Conference (ASIAN'P@)4e.

R. Bent, I. Katriel, and P. Van Hentenryck. Sub-optimality Approximatiolbscture Notes in
Computer Scien¢&709:122, 2005.

R. Bent and P. Van Hentenryck. Online Stochastic Optimization without Disiiss! InPro-
ceedings of the 15th International Conference on Automated Plannindpédaiting (ICAPS)
2005.

97

Bibliography

R. Bent and P.V. Hentenryck. A two-stage hybrid algorithm for picku@ delivery vehicle
routing problems with time windowsComputers and Operations Resegrd3(4):875-893,
2006.

H. Chang, R. Givan, and E. Chong. On-line scheduling via sampligificial Intelligence
Planning and Scheduling (AIPS)(Breckenridge, Colorado, 2008jes 62—71.

P. Toth and D. VigoThe Vehicle Routing Probler8IAM Monographs on Discrete Mathematics
and Applications, PA, USA, 2002.

Leiserson C.E. Rivest R.L. Cormen, T.H. and C. Steiriroduction to algorithms MIT press,
2001.

MM Solomon. Algorithms for the vehicle routing and scheduling problems with timelevin
constraints Operations Resear¢i35(2):254-265, 1987.

H.N. Psaraftis. Dynamic vehicle routing probleméhicle Routing: Methods and Studié$:
223-248, 1988.

W.R. Stewart. The Delivery Truck Routing Problem with Stochastic Demamd®RSA/TIMS
meeting November 1976.

T.M. Cook and R.A. Russell. A Simulation and Statistical Analysis of StochasticieRout-
ing with Timing ConstraintsDecision Science®(4):673-687, 1978.

L.M. Hvattum, A. Lokketangen, and G. Laporte. A branch-and-relyeefristic for stochastic
and dynamic vehicle routing problemsetwork-New York-49(4):330, 2007.

G. Clarke and JW Wright. Scheduling of vehicles from a central depontmaber of delivery
points. Operations Researchi2(4):568-581, 1964.

O. Braysy and M. Gendreau. Vehicle Routing Problem with Time Windows, IP&oute
Construction and Local Search AlgorithmBansportation Scien¢&9(1):104-118, 2005a.

O. Braysy and M. Gendreau. Vehicle Routing Problem with Time Window |PMetaheuris-
tics. Transportation Scien¢&9(1):119-139, 2005b.

G. loannou, M. Kritikos, and G. Prastacos. A greedy look-aheadst&ufor the vehicle routing
problem with time windows.The Journal of the Operational Research SogGi&®(5):523—
537, 2001.

J.B. Atkinson. A greedy look-ahead heuristic for combinatorial optimizatamnapplication to
vehicle scheduling with time windowslournal-Operational Research Socigthp:673-673,
1994.

[.M. Whittley and G.D. Smith. The attribute based hill climbdournal of Mathematical Mod-
elling and Algorithms3(2):167-178, 2004.

U. Derigs and R. Kaiser. Applying the attribute based hill climber heuristic teehgle routing
problem.European Journal of Operational Researdit7(2):719-732, 2007.

98

Bibliography

Jesper Nikolajsen. Algorithms for Optimizing Work Schedules for ServiasdPmel in the
Home Care Sector. Master’s thesis, Department of Mathermatics and Congmigace
(IMADA), University of Southern Denmark, 2009.

H.H. Hoos and T. Sitzle. Stochastic local search: Foundations and applicatioridorgan
Kaufmann, 2005.

A. Larsen, O. Madsen, and M. Solomon. Partially dynamic vehicle routing -efeahd algo-
rithms. Journal of the Operational Research Socjéi$:637—646, jun 2002.

M. Gendreau, F. Guertin, J.Y. Potvin, and E. Taillard. Parallel tabickdar real-time vehicle
routing and dispatchinglransportation Scien¢&3(4):381, 1999.

99

Bibliography

100

A Detailed Test Output

A.1 ILS Tuning: Graphs

A.1.1 Tuning Permutation by Neighbourhood

Test of Permutation by Exchange on R110

o
o _
n
<~
—e— 5 exchanges
§ | —&— 15 exchanges
< —o— 25 exchanges
—A— 35 exchanges
8
n
[32)
S
= o
g 8-
[(32}
=
8 3
o o 7]
O N
o
o _|
o
N
o
o _J
n
-
524
T T T T T T T
0 5 10 15 20 25 30
Cpu (s)

Figure A.1: ILS: Permutation by Neighbourhood: Large graph of tuning on R110 from section 6.4.2

101

Al

ILS TUNING: GRAPHS

Test of Permutation by Exchange on R204

R -©- 5 exchanges
o
@ N SIIIoN-- RN - 8- 15 exchanges
* AT .l -©- 25 exchanges
‘o . Tl - A- 35 exchanges
Y N “tizﬂi 777777777777777777777777777777
o \ N .l
3 3 \ .
< Y Se
> \ .
2 \ R B 4
8 o \ T TTree-alal
\\\ \\\\1},,,,
8 -
[} o
o
e o ©
T T T T T T
5 10 15 20 25 30
Cpu (s)
Figure A.2: ILS: Permutation by Neighbourhood: Large graph of tuning on R204 from section 6.4.2
Test of Permutation by Exchange on C107
o
3 - |—e— Sexchanges | |
< —&— 15 exchanges
o —o— 25 exchanges
Q —A— 35 exchanges
<
g §-
(S <
>
2 3
g S
<
S o
o _
3
o
o _|
3
o AN -
o _|
<
™ T T T T T T T
0 5 10 15 20 25 30
Cpu (s)

Figure A.3: ILS: Permutation by Neighbourhood: Large graph of tuning on C107 from section 6.4.2

102

APPENDIX A. DETAILED TEST OUTPUT

Test of Permutation by Exchange on C203

8
g -
—o— 5 exchanges
o —&— 15 exchanges
§ - —o— 25 exchanges
—A— 35 exchanges
o
o _
N
o -
=]
3
> 8]
R
=
o
Q o
o o
o 3
i \
S
()
[=} \
S
[ee]
|5 3l

T T T T T T T
0 5 10 15 20 25 30

Cpu (s)

Figure A.4: ILS: Permutation by Neighbourhood: Large graph of tuning on C203 from section 6.4.2

Test of Permutation by Exchange on RC104

o —&— 5 exchanges
S - —&— 15 exchanges
® —o— 25 exchanges
o —A— 35 exchanges
o _|
wn
~
S
= o
s 8
[~
=
g o
£ 8-
o ©
o
o _J
o
©
o
o _|
]
= £
T T T T T T 1
0 5 10 15 20 25 30

Cpu (s)

Figure A.5: ILS: Permutation by Neighbourhood: Large graph of tuning on RC104 from section 6.4.2

103

A.1. ILS TUNING: GRAPHS

Test of Permutation by Exchange on RC206

o —o— 5 exchanges
e - —&— 15 exchanges
~ —o— 25 exchanges
—A— 35 exchanges
s 8
g 3
[
=
3]
2
o)
C o
o _|
(52}
-
o
wn _]
N
—
T T T T T T T
0 5 10 15 20 25 30

Cpu (s)

Figure A.6: ILS: Permutation by Neighbourhood: Large graph of tuning on RC206 from section 6.4.2

A.1.2 Tuning Permutation by Removal

Test of Permutation by Removal on R110

o
o _
n
<~
° —e— 5% removed
8 - —&— 10% removed
< —o— 15% removed
° —A— 20% removed
S - —7— 25% removed
(3]
[}
=] [=]
s g
© (3]
=
o o
2 R
8 «
o
o _|
o
N
o
o _|
n
—
S hd

Cpu (s)

Figure A.7: ILS: Permutation by Removal: Large graph of tuning on R110 from section 6.4.2

104

APPENDIX A. DETAILED TEST OUTPUT

Test of Permutation by Removal on R204

—o— 5% removed
§ - —&— 10% removed
—o— 15% removed
—A— 20% removed
—v— 25% removed
[}
£ 8-
>
[
=
k3]
2
o)
[e]
o
3 4
e}
o
S
@
T T T T T T T
0 5 10 15 20 25 30
Cpu (s)

Figure A.8: ILS: Permutation by Removal: Large graph of tuning on R204 from section 6.4.2

Test of Permutation by Removal on C107

—e— 5% removed
—&— 10% removed
g | —o— 15% removed
< —A— 20% removed
—7— 25% removed
[}
=]
§ g |
R
3]
2,
Ke)
[e]
S =
8 - . g
o
o _|
o
- T T T T T T T
0 5 10 15 20 25 30

Cpu (s)

Figure A.9: ILS: Permutation by Removal: Large graph of tuning on C107 from section 6.4.2

105

A.1. ILS TUNING: GRAPHS

Test of Permutation by Removal on C203

o
o]
3
—e— 5% removed
—&— 10% removed
—o— 15% removed
o —A— 20% removed
< - —7— 25% removed
-
[}
=]
3
>
: g8
g S
2z
(e}
o
S
@ A
2

0 5 10 15 20 25 30

Cpu (s)

Figure A.10: ILS: Permutation by Removal: Large graph of tuning on C203 from section 6.4.2

Test of Permutation by Removal on RC104

o $<
S —e— 5% removed
@ —&— 10% removed
—o— 15% removed
o 6—6 —A— 20% removed
S - —7— 25% removed
=
g
£ 8)
g
3]
Q £
Qo A =1
o 8
o
Te]
o <
o _|
(=]
<
o
3
Q T T T T T T T
0 5 10 15 20 25 30

Cpu (s)

Figure A.11: ILS: Permutation by Removal: Large graph of tuning on RC104 from section 6.4.2

106

APPENDIX A. DETAILED TEST OUTPUT

Test of Permutation by Removal on RC206

8 | —e— 5% removed
s —&— 10% removed
—o— 15% removed
—A— 20% removed
ﬁ i —7— 25% removed
-
[}
=]
S o
o _|
R
=
|5}
Q
o
O o
n _|
N
-
o
o _|
N
-

Cpu (s)

Figure A.12: ILS: Permutation by Removal: Large graph of tuning on RC206 from section 6.4.2

A.1.3 Tuning Permutation by Removal and Neighbourhood

Test of Permutation by Removal and Exchange on R110

o
o _
n
Q2 a
—o— 5% rem., 5 exch.
§ | —&— 5% rem., 15 exch.
< —o— 10% rem., 5 exch.
—A— 10% rem., 15 exch.
o
o _|
n
™
%
= o
T oS
> S
[(3]
=
5 o
L Q2
g R
o
o _|
o
N
o
o _|
n
-

0 5 10 15 20 25 30

Cpu (s)

Figure A.13: ILS: Permutation by Removal and Permutation: Large graph of tuning on R110 from
section 6.4.2

107

A.1. ILS TUNING: GRAPHS

Test of Permutation by Removal and Exchange on R204

3 —e— 5% rem., 5 exch.
m —8— 5% rem., 15 exch.
—— 10% rem., 5 exch.
e | —A— 10% rem., 15 exch.
(=)
ER
T o
>
[
£ o
8 87
o)
(e}
o
8 4
@
o
3 4
@

Cpu (s)

Figure A.14: ILS: Permutation by Removal and Permutation: Large graph of tuning on R204 from

section 6.4.2
Test of Permutation by Removal and Exchange on C107
3
8 | —6— 5% rem., 5 exch.
kel —&— 5% rem., 15 em
—o— 10% rem., 5 exch.
—A— 10% rem., 15 exch.

o

o _

(=]
) <
=
©
>
-
| 5] 0
L ®
o)
[¢)

o

o _|

o

(3]

o

o _|

Tel

N

T T T T T T I
0 5 10 15 20 25 30

Cpu (s)

Figure A.15: ILS: Permutation by Removal and Permutation: Large graph of tuning on C107 from
section 6.4.2

108

APPENDIX A. DETAILED TEST OUTPUT

Test of Permutation by Removal and Exchange on C203

5% rem., 5 exch.
5% rem., 15 exch.
10% rem., 5 exch.
10% rem., 15 exch.

b

Objective Value
900 1000 1100 1200 1300 1400

700

Cpu (s)

Figure A.16: ILS: Permutation by Removal and Permutation: Large graph of tuning on C203 from

section 6.4.2
Test of Permutation by Removal and Exchange on RC104
S | —e— 5% rem., 5 exch.
I —8— 5% rem., 15 exch.
—o— 10% rem., 5 exch.
—A— 10% rem., 15 exch.

o £

o _|
g R
@
>
[
2 b
8 ©

o

o _l

o

n

T T T T T T I
0 5 10 15 20 25 30

Cpu (s)

Figure A.17: ILS: Permutation by Removal and Permutation: Large graph of tuning on RC104 from
section 6.4.2

109

A.2. DETAILED RESULTS OF REGRET TUNING

Test of Permutation by Removal and Exchange on RC206

5% rem., 5 exch.
5% rem., 15 exch.
10% rem., 5 exch.
10% rem., 15 exch.

b

1350

1300
1

Objective Value
1250
1

1200
|

Cpu (s)

Figure A.18: ILS: Permutation by Removal and Permutation: Large graph of tuning on RC206 from
section 6.4.2

A.2 Detailed Results of Regret Tuning

Tuning of Regret with Discretization Size 35

RR_PLAN. dat :

Unserved Length Obj Instance |nstanceNr
3 1102. 62 3001102622. 00 180Loose 1

1 1133.04 1001133042.00 180Ti ght 2

0 673.39 673390. 00 600Loose 3

2 842.71 2000842714.00 600Ti ght 4

RR_PLAN_SAMPLED. dat :

Unserved Length Obj Instance |nstanceNr
2 1028.47 2001028474.00 180Loose 1

2 1176.95 2001176950. 00 180Ti ght 2

1 725.55 1000725546. 00 600Loose 3

1 815.24 1000815238. 00 600Ti ght 4

Unserved Length Obj Instance |nstanceNr
1 1105.05 1001105051. 00 180Loose 1

2 1117.85 2001117849. 00 180Ti ght 2

0 670.13 670129. 00 600Loose 3

0 834.14 834139. 00 600Ti ght 4

RR_ROUTE_SAMPLED. dat :

110

APPENDIX A. DETAILED TEST OUTPUT

Unserved Length Obj Instance |nstanceNr
1 1152.21 1001152212. 00 180Loose 1

0 1131.31 1131314.00 180Ti ght 2

0 711.60 711596. 00 600Loose 3

0 882.55 882554. 00 600Ti ght 4

R_PLAN. dat

Unserved Length Obj Instance |nstanceNr
1 891.47 1000891471. 00 180Loose 1

2 1040. 74 2001040739. 00 180Ti ght 2

0 655.92 655924. 00 600Loose 3

3 721. 26 3000721264.00 600Ti ght 4

Unserved Length Obj Instance |nstanceNr
1 964.30 1000964295. 00 180Loose 1

0 1019. 60 1019600. 00 180Ti ght 2

0 606. 01 606009. 00 600Loose 3

2 764.27 2000764268. 00 600Ti ght 4

Tuning of Regret with Discretization Size 24

RR_ROUTE_SAMPLED. dat :

Unserved Length Obj Instance |nstanceNr
0 1046.34 1046343.00 180Loose 1

0 1228.84 1228838.00 180Ti ght 2

0 705.56 705562.00 600Loose 3

2 865.94 2000865939. 00 600Ti ght 4

Unserved Length Obj Instance |nstanceNr
2 1049. 08 2001049080. 00 180Loose 1

1 1095. 66 1001095657.00 180Ti ght 2

0 731.38 731378.00 600Loose 3

0 777.68 777683.00 600Ti ght 4

RR_PLAN_SAMPLED. dat :

Unserved Length Obj Instance |nstanceNr
2 1098. 15 2001098152. 00 180Loose 1

1 1127.31 1001127306. 00 180Ti ght 2

1 666.78 1000666782. 00 600Loose 3

0 854.07 854069. 00 600Ti ght 4

RR_PLAN. dat :

Unserved Length Obj Instance |nstanceNr
0 1154.21 1154205.00 180Loose 1

1 1195.04 1001195041.00 180Ti ght 2

0 679.78 679780. 00 600Loose 3

1 803.02 1000803019. 00 600Ti ght 4

Unserved Length Obj Instance |nstanceNr
1 1007.54 1001007535. 00 180Loose 1

111

A.3. DETAILED RESULTS OF DISCRETIZATION TUNING

0 1018.47 1018471. 00 180Ti ght 2
0 632.26 632256. 00 600Loose 3
1 801.81 1000801805. 00 600Ti ght 4

R_PLAN. dat

Unserved Length Obj Instance |nstanceNr
1 947.48 1000947484.00 180Loose 1

0 1067.22 1067216.00 180Ti ght 2

0 694. 49 694489. 00 600Loose 3

2 877.87 2000877865. 00 600Ti ght 4

A.3 Detailed Results of Discretization Tuning

Tuning of Discretization for CR

RR_70. dat :

Unserved Length Obj Instance |nstanceNr
1 1067.10 1001067102.00 180Loose 1

2 1095. 24 2001095235. 00 180Ti ght 2

0 613.62 613621. 00 600Loose 3

0 899. 32 899320. 00 600Ti ght 4

RR_35. dat :

Unserved Length Obj Instance |nstanceNr
0 1078.77 1078769. 00 180Loose 1

1 1276.54 1001276542. 00 180Ti ght 2

0 636.52 636523. 00 600Loose 3

0 920. 48 920483. 00 600Ti ght 4

RR _24. dat:

Unserved Length Obj Instance |nstanceNr
1 1004.18 1001004176.00 180Loose 1

0 1195.10 1195099. 00 180Ti ght 2

0 669.68 669677. 00 600Loose 3

1 755.92 1000755915. 00 600Ti ght 4

RR_18. dat :

Unserved Length Obj Instance |nstanceNr
0 959.49 959492. 00 180Loose 1

0 1080.98 1080976.00 180Ti ght 2

1 719.17 1000719166. 00 600Loose 3

1 833.90 1000833897.00 600Ti ght 4

RR 10. dat :

Unserved Length Obj Instance |nstanceNr
1 979.27 1000979271. 00 180Loose 1

1 1153.89 1001153894. 00 180Ti ght 2

0 630.90 630902. 00 600Loose 3

0 839. 03 839034.00 600Ti ght 4

Tuning of Discretization for RR
RR _70. dat :

Unserved Length Obj Instance |nstanceNr

112

APPENDIX A. DETAILED TEST OUTPUT

1 1063. 16 1001063155. 00 180Loose 1
1 1246.51 1001246512. 00 180Ti ght 2
0 703.13 703134. 00 600Loose 3
0 864.07 864072. 00 600Ti ght 4

RR_35. dat

Unserved Length Obj Instance |nstanceNr
1 1080. 83 1001080830. 00 180Loose 1

2 1130.79 2001130794.00 180Ti ght 2

0 708.03 708030. 00 600Loose 3

2 812.51 2000812513. 00 600Ti ght 4

Unserved Length Obj Instance |nstanceNr
1 1036.54 1001036541. 00 180Loose 1

1 1119.06 1001119061.00 180Ti ght 2

0 684.46 684455. 00 600Loose 3

0 870.27 870269.00 600Ti ght 4

RR_18. dat

Unserved Length Obj Instance |nstanceNr
1 1173.41 1001173412. 00 180Loose 1

1 1119.30 1001119298. 00 180Ti ght 2

0 713.80 713796.00 600Loose 3

3 746.89 3000746890. 00 600Ti ght 4

RR_10. dat

Unserved Length Obj Instance |nstanceNr
2 1049. 83 2001049830. 00 180Loose 1

1 1158.47 1001158468. 00 180Ti ght 2

0 686.78 686781. 00 600Loose 3

1 797.24 1000797236. 00 600Ti ght 4

A.4 Detailed Results from Historical Sampling Tests
A.4.1 180LOOSE

Al gorithm Sanpl i ngType Unassi gned Length Obj Instance |nstanceNr

C 0 3 934.74 3934739.00 180Loose 1
C 1 2 960.43 2960432. 00 180Loose 1
C 2 1 982.47 1982470.00 180Loose 1
C 3 1 990.97 1990967.00 180Loose 1
C 4 1 900.91 1900907.00 180Loose 1
R 0 3 954.93 3954933. 00 180Loose 1
R 1 2 1021.78 3021776.00 180Loose 1
R 2 4 927.51 4927512. 00 180Loose 1
R 3 1 947.14 1947138.00 180Loose 1
R 4 0 913.42 913419. 00 180Loose 1

1050. 41 5050412. 00 180Loose
1049. 40 3049396. 00 180Loose
1064. 66 4064664. 00 180Loose
1017. 42 3017422.00 180Loose
962. 86 2962859. 00 180Loose 1

1
1
1
1

33399

113

A.4. DETAILED RESULTS FROM HISTORICAL SAMPLING TESTS

1044. 91 4044906. 00 180Loose 1
1060. 95 3060952. 00 180Loose 1
1099. 25 4099246. 00 180Loose 1
992. 82 5992816. 00 180Loose 1
938. 64 1938640. 00 180Loose 1

DDV IOD
00040
AwWNEFRO
PO wNw

Ih
N

180TIGHT

orithm Sanpl i ngType Unassi gned Length Cbj |nstance |nstanceNr
4 992. 83 4992834. 00 180Ti ght 2
2 1011. 54 3011540.00 180Ti ght 2
2 967.90 2967897.00 180Ti ght 2
2 1021.06 3021060.00 180Ti ght 2
1 999. 06 1999060. 00 180Ti ght 2
3 1033. 51 4033514. 00 180Ti ght 2
4 920.81 4920814.00 180Ti ght 2
3 954.13 3954128. 00 180Ti ght 2
3 964.84 3964842.00 180Tight 2
0 1007.16 1007163.00 180Ti ght 2
1172.93 7172925. 00 180Ti ght
1116. 77 4116773. 00 180Ti ght
1095. 22 2095222. 00 180Ti ght
1150. 88 7150883. 00 180Ti ght
1014. 15 2014154. 00 180Ti ght
1102. 96 10102956. 00 180Ti ght 2
1049. 67 4049670. 00 180Ti ght 2
1102. 86 4102862. 00 180Ti ght 2
1172. 25 3172248. 00 180Ti ght 2
1033. 74 1033736. 00 180Ti ght 2

TTIJTITITOOOOOE >

PWONPFPORMWNEOGQ

33BFIL9IIY

APrWONRFRPORMWNEO
ONWWOROOFR,WO®

A.4.3 600LOOSE

Al gorithm Sanpl i ngType Unassi gned Length Obj Instance |InstanceNr

594. 72 1594721. 00 600Loose 3

595. 98 595981. 00 600Loose 3

587.09 1587090. 00 600Loose 3

620. 63 620631. 00 600Loose

599. 86 599855. 00 600Loose

690. 46 690462. 00 600Loose
680. 88 680879. 00 600Loose
743. 67 743665. 00 600Loose
782.37 782367.00 600Loose
683. 49 683493. 00 600Loose
835. 24 2835239. 00 600Loose 3

DDV TOTOOOOO
AWNRFRPOMWNERO
[eNeNoNoNeNeNaN N
WwWwwwww

CRO 2

CR 1 0 863.53 863532. 00 600Loose 3
CR 2 0 970.31 970310. 00 600Loose 3
CR 3 0 789.38 789384.00 600Loose 3
CR 4 0 555.04 555041. 00 600Loose 3
RR 0 4 815.31 4815308. 00 600Loose 3
RR 1 0 1039. 61 1039614. 00 600Loose 3
RR 2 0 1008.56 1008563. 00 600Loose 3
RR 3 0 872.95 872953. 00 600Loose 3
RR 4 0 657.28 657278. 00 600Loose 3

A.4.4 600TIGHT

Al gorithm SanplingType Unassigned Length Obj Instance |InstanceNr
C 0 1 819.78 1819776.00 600Ti ght 4
1 1 758.66 1758663. 00 600Ti ght 4
2 0 834.93 834930.00 600Ti ght 4
3 1 774.48 1774477.00 600Ti ght 4
40

C
cC
Cc
Cc 730. 74 730735.00 600Ti ght 4

114

APPENDIX A. DETAILED TEST OUTPUT

R 0 1 853.46 1853455. 00 600Ti ght 4
R 1 2 790.55 2790545. 00 600Ti ght 4
R 2 2 777.47 2777468. 00 600Ti ght 4
R 3 1 752.36 1752356. 00 600Ti ght 4
R 4 0 783.29 783291.00 600Ti ght 4
CR 0 2 1263.94 3263943.00 600Ti ght 4
CR 1 0 1172.01 1172007.00 600Ti ght 4
CR 2 0 1325.67 1325668. 00 600Ti ght 4
CR 3 0 1251.81 1251808. 00 600Ti ght 4
CR 4 1 767.88 1767884.00 600Ti ght 4
RR 0 1 1147.45 2147447.00 600Ti ght 4
RR 1 2 1246.77 3246766. 00 600Ti ght 4
RR 2 1 1186.26 2186255. 00 600Ti ght 4
RR 3 0 1249.93 1249930. 00 600Ti ght 4
41

799.70 1799703. 00 600Ti ght 4

A.5 Detailed Results of the Comparison of Algorithms

A.5.1 180LOOSE
Offline solution

Al gorithm OnlineCd ass Unassi gned Length Obj Instance |nstanceNr
OFF 0 0 787468.0 787468.0 180Loose 1

Oblivious Online Solutions

Al gorithm Onlined ass Unassigned Length Obj Instance InstanceNr runNr

RR 1 0 974.11 974113. 00 180Loose 1 1
RR 1 0 960.16 960156. 00 180Loose 1 2
RR 1 1 947.62 1947620. 00 180Loose 1 3
RR 1 2 922.93 2922929. 00 180Loose 1 5
RR 1 2 868.17 2868173. 00 180Loose 1 4
RR 1 1 978.29 1978285. 00 180Loose 1 6
RR 2 2 946.71 2946705. 00 180Loose 1 2
RR 2 2 889.21 2889209. 00 180Loose 1 1
RR 2 3 915.87 3915871.00 180Loose 1 3
RR 2 2 897.23 2897231. 00 180Loose 1 5
RR 2 1 917.26 1917264.00 180Loose 1 6
RR 2 2 1005.61 3005607. 00 180Loose 1 4
RR 3 2 950.71 2950709. 00 180Loose 1 2
RR 3 1 917.45 1917454.00 180Loose 1 1
RR 3 1 922.93 1922928. 00 180Loose 1 3
RR 3 2 938.22 2938221.00 180Loose 1 5
RR 3 1 904.94 1904939. 00 180Loose 1 6
RR 3 1 884.84 1884836.00 180Loose 1 4
RR 4 1 986.14 1986140. 00 180Loose 1 2
RR 4 2 991.30 2991298.00 180Loose 1 1
RR 4 4 882.49 4882490. 00 180Loose 1 3
RR 4 2 862.86 2862863. 00 180Loose 1 6
RR 4 2 887.68 2887675.00 180Loose 1 5
RR 4 1 933.71 1933705. 00 180Loose 1 4
RR 5 2 923. 31 2923308. 00 180Loose 1 2
RR 5 2 835.12 2835119. 00 180Loose 1 3
RR 5 3 925. 02 3925024.00 180Loose 1 6
RR 5 1 866.70 1866701. 00 180Loose 1 5
RR 5 2 983.80 2983802. 00 180Loose 1 1
RR 5 1 878.14 1878143.00 180Loose 1 4
C1 1 873.09 1873090.00 180Loose 1 2
C 1 1 899.35 1899349.00 180Loose 1 6
C 1 1 924.22 1924216.00 180Loose 1 5

115

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

842. 02 2842018. 00 180Loose
924.49 1924493. 00 180Loose
966. 00 1966000. 00 180Loose
893. 24 1893236. 00 180Loose
868. 79 2868793. 00 180Loose
877.82 3877823. 00 180Loose
886. 94 2886943. 00 180Loose
961. 01 1961009. 00 180Loose
979. 17 1979167. 00 180Loose
834. 43 2834429. 00 180Loose
898. 36 2898364. 00 180Loose
886. 67 3886673. 00 180Loose
951. 29 1951286. 00 180Loose
928. 70 1928701. 00 180Loose
892. 40 1892398. 00 180Loose
944.24 944238.00 180Loose 1 2

966. 79 966794. 00 180Loose 1 6

958. 70 1958698. 00 180Loose 1 5
927.68 927675.00 180Loose 1 3

896. 39 1896390. 00 180Loose
875. 65 1875645. 00 180Loose
958. 41 1958412. 00 180Loose
932. 35 1932353. 00 180Loose
933. 92 1933924. 00 180Loose
992. 15 992147.00 180Loose 1 3
860. 78 2860782. 00 180Loose
931. 30 1931304. 00 180Loose
948. 04 2948040. 00 180Loose
886. 02 2886015. 00 180Loose
894. 48 1894481. 00 180Loose
927.59 1927588. 00 180Loose
954. 71 1954711. 00 180Loose
955. 96 1955962. 00 180Loose
963. 58 2963576. 00 180Loose
946. 68 1946675. 00 180Loose
868. 94 2868938. 00 180Loose
851.91 2851906. 00 180Loose
946. 71 1946707. 00 180Loose
881. 38 881381.00 180Loose 1 4
987. 14 2987144. 00 180Loose
932. 66 1932662. 00 180Loose
900. 93 2900932. 00 180Loose
971.10 1971104. 00 180Loose
908. 45 2908447. 00 180Loose
977.21 1977209. 00 180Loose
949. 60 1949603. 00 180Loose
957.71 1957710. 00 180Loose
883. 12 1883123. 00 180Loose
890. 00 1889999. 00 180Loose
990. 12 2990118. 00 180Loose
916. 23 916233. 00 180Loose 1 4
898. 72 2898724. 00 180Loose
985. 82 3985824. 00 180Loose
901. 41 2901407. 00 180Loose
984. 74 1984736. 00 180Loose
948. 72 3948724. 00 180Loose
923.76 2923764. 00 180Loose
1 867.67 1867666. 00 180Loose 1 2
1 940. 63 1940634. 00 180Loose 1 6
1 887.58 1887581. 00 180Loose 1 5
2
0

RPRRRPRRERRPRRRPRRRRERE
AR WUONBMRUWONDER W

e e N
TgoON DR

RPRRRPRRRRERRRERRER
RPWUONAMRWUOONIMNER

VDOVOVVOVDOVDXVOVDAOVDDVDOVDAOOVDODAODVDODOODODOOODDODODODODDODITOOO0OO0O0O0O0O0O0O0O0O0O0O0O0000O00O0O0O0O0O0O0OO0O
RPRRRPRRERRPRRERRERER
RPWUOONAMRWUON

QUNUOUARBRMRRDRWWWWWWNNNNNNRRPRREPRPRPOGUOUODMDAMDRDADRDWWWWWWNRNNNNNRERR
NWRNWNONRRREPRRENRNRNORNNRNRREPREPREPNNRNORRRPREPRPOROORRPREPWONNRPRERNWNREERN

PR RREPR R
AR WO ON

885. 18 2885180. 00 180Loose 1 3
852. 45 852451. 00 180Loose 1 1

33399

116

APPENDIX A. DETAILED TEST OUTPUT

884. 93 884931. 00 180Loose 1 4
927. 04 1927040. 00 180Loose
983. 11 2983105. 00 180Loose
978. 08 1978083. 00 180Loose
888. 27 2888272. 00 180Loose
821. 04 3821042. 00 180Loose
978. 78 2978777.00 180Loose
895. 65 895649. 00 180Loose 1 2
928. 60 1928597. 00 180Loose
908. 07 2908068. 00 180Loose
889. 90 2889896. 00 180Loose
930. 04 2930035. 00 180Loose
891. 85 1891847. 00 180Loose
909. 04 1909042. 00 180Loose
873. 68 2873682. 00 180Loose
912. 30 1912297.00 180Loose
969. 23 969226. 00 180Loose 1 1
964. 06 964064.00 180Loose 1 3
883. 53 2883534. 00 180Loose
980. 98 2980982. 00 180Loose
918. 50 2918501. 00 180Loose
912. 84 1912836. 00 180Loose
877.20 1877202. 00 180Loose
887.74 2887743. 00 180Loose
926. 30 2926304. 00 180Loose
928. 57 2928566. 00 180Loose
1008. 32 4008323. 00 180Loose 1 0
921.76 1921756.00 180Loose 1 0
946. 42 1946423. 00 180Loose 1 0
1100. 75 3100751.00 180Loose 1 0

RRRRRR
AR WO oON

PR RPRRRERRRE
ONAMRWUAOOD

RPRRREPRRERR

ITFITIIVIIIIIIITILIIIIIFILGIIS

NEPRPWONNMNNRPEPNMNMNNOORNREPENNMNNRERPONMWNRENEREO

C 1 3 825.42 3825421.00 180Loose 1 0
C 2 2 906.46 2906461.00 180Loose 1 0
C 3 1 1004.80 2004801.00 180Loose 1 0
C 4 1 931.95 1931950.00 180Loose 1 0
C 5 2 907.52 2907519. 00 180Loose 1 0
R 1 1 925.50 1925500. 00 180Loose 1 0O
R 2 2 893.52 2893524. 00 180Loose 1 0
R 3 1 916.56 1916555. 00 180Loose 1 0O
R 4 1 949.74 1949739. 00 180Loose 1 0
R 5 1 920.88 1920882. 00 180Loose 1 0O
CR 1 2 874.54 2874540.00 180Loose 1 0
CR 2 2 889.95 2889951. 00 180Loose 1 0
CR 3 3 895.98 3895975.00 180Loose 1 0
CR 4 1 940.96 1940962.00 180Loose 1 0
CR 5 2 872.38 2872378.00 180Loose 1 0

Online Stochastic Algorithm Solutions

Al gorithm OnlineC ass Unassigned Length Obj Instance |nstanceNr

NN 1 2 1254.65 3254654. 00 180Loose 1
NN 2 2 1274.82 3274815. 00 180Loose 1
NN 3 2 1254. 65 3254654. 00 180Loose 1
NN 4 4 1237.25 5237253. 00 180Loose 1
NN 5 4 1254. 04 5254044.00 180Loose 1
NI 1 1 968.79 1968794. 00 180Loose 1
NI 2 1 971.67 1971674.00 180Loose 1
NI 3 1 968.79 1968794. 00 180Loose 1
N 4 2 1036.26 3036262. 00 180Loose 1
NI 5 2 1073.13 3073132. 00 180Loose 1

LO 1 15 740.28 15740284. 00 180Loose 1
LO 2 15 759. 42 15759419. 00 180Loose 1
LO 3 15 740.28 15740284. 00 180Loose 1

117

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

LO 4 16 771.99 16771989. 00 180Loose 1
LO 5 19 741.61 19741607. 00 180Loose 1

A.5.2 180TIGHT
Offline solution

Al gorithm Onlined ass Unassi gned Length Obj Instance |nstanceNr
OFF 0 0 959971.0 959971.0 180Ti ght 2

Oblivious Online Solutions

Al gorithm Onlined ass Unassi gned Length Obj Instance InstanceNr runNr

RR 1 3 961.30 3961297. 00 180Tight 2 5
RR 1 2 1002.97 3002968. 00 180Ti ght 2 2
RR 1 1 1019.52 2019517.00 180Tight 2 1
RR 1 1 955.75 1955751.00 180Tight 2 6
RR 1 0 1002.51 1002511. 00 180Tight 2 4
RR 1 1 1004.25 2004254.00 180Tight 2 3
RR 2 2 1001.07 3001065.00 180Tight 2 5
RR 2 1 1046.43 2046430. 00 180Tight 2 2
RR 2 2 958.60 2958603. 00 180Tight 2 1
RR 2 1 972.84 1972838. 00 180Tight 2 6
RR 2 3 925. 04 3925035. 00 180Tight 2 4
RR 2 2 952.83 2952830. 00 180Tight 2 3
RR 3 1 1024.99 2024992.00 180Tight 2 5
RR 3 0 1081.53 1081528.00 180Tight 2 2
RR 3 1 1109.20 2109203. 00 180Tight 2 1
RR 3 2 1068.41 3068409.00 180Tight 2 6
RR 3 1 955.25 1955254. 00 180Tight 2 4
RR 3 0 1071.43 1071428.00 180Tight 2 3
RR 4 0 1009. 34 1009339. 00 180Tight 2 5
RR 4 1 1001.61 2001612. 00 180Tight 2 2
RR 4 1 1037.99 2037987.00 180Tight 2 1
RR 4 1 1001.72 2001718.00 180Tight 2 6
RR 4 2 1010.10 3010098.00 180Tight 2 4
RR 4 0 1083.15 1083151. 00 180Tight 2 3
RR 5 1 1085.27 2085271.00 180Tight 2 5
RR 5 0 989.74 989740. 00 180Tight 2 2
RR 5 1 982.46 1982462.00 180Tight 2 1
RR 5 1 1007.98 2007984. 00 180Tight 2 6
RR 5 0 1012.79 1012793.00 180Tight 2 4
RR 5 0 1007.69 1007692. 00 180Ti ght 2 3
C 1 1 985.47 1985468.00 180Tight 2 5
C 1 0 978.00 978004.00 180Tight 2 2

C 1 0 989.07 989065. 00 180Tight 2 1

C 1 0 1025.77 1025773.00 180Tight 2 4
C 1 1 998.13 1998131.00 180Tight 2 6
C 1 1 968.35 1968352. 00 180Tight 2 3
C 2 1 969.48 1969483.00 180Tight 2 5
C 2 1 967.74 1967735.00 180Tight 2 2
C 2 0 964.78 964775.00 180Tight 2 1

C 2 2 973.37 2973370.00 180Tight 2 4
C 2 0 1025.77 1025771.00 180Tight 2 6
C 2 0 1032.52 1032520. 00 180Tight 2 3
C 3 0 967.93 967932.00 180Tight 2 5

C 3 0 1012.41 1012407.00 180Tight 2 2
C 3 0 1047.93 1047930.00 180Tight 2 1
C 3 1 943.62 1943622.00 180Tight 2 6
C 3 0 1007.46 1007460.00 180Tight 2 4
C 4 0 992.30 992300.00 180Tight 2 5

118

APPENDIX A. DETAILED TEST OUTPUT

VDOV VOVDODOVDODOVDOVDOVDOVVDODOODODODODODODODODODDODDDODTOOOOOOOOOOO
PO AOWRARDRMDREAEANWWWWWENNNNNUORRPRRPEPMAgOUOOODWASED
OPrRPOO0OORRPRPPFPORPROOFRPROOOOORPROOO0OO0OO0OO0OORPOOOORrROOOOOOO

FIIFIIIIFIIFIFIITILFISI

AANPAPOWWWWENNNDNDN
PRPWRORPNOMNMMNMNNWENDN

13
13
11
12
11

990. 44 990443. 00 180Tight 2 2
990. 83 990825. 00 180Tight 2 1
1016. 63 1016632. 00 180Ti ght 2 4
990. 16 990164. 00 180Tight 2 3
1011. 13 1011129.00 180Tight 2 6
1015. 62 1015618. 00 180Tight 2 5
978. 34 978343.00 180Tight 2 2
950. 52 1950515. 00 180Tight 2 1
1011. 43 1011434.00 180Tight 2 4
982. 55 982550. 00 180Tight 2 6
980. 11 980110.00 180Tight 2 3
961. 09 961090. 00 180Tight 2 5
966. 33 1966325. 00 180Tight 2 2
945. 74 1945743.00 180Tight 2 1
959. 05 959050. 00 180Tight 2 4
935. 47 935467.00 180Tight 2 6
994. 04 994042. 00 180Tight 2 3
1011. 06 1011060.00 180Tight 2 5
957. 27 957271. 00 180Tight 2 2
1017. 83 1017834.00 180Tight 2 1
996. 30 996295. 00 180Tight 2 4
968. 37 1968366. 00 180Tight 2 6
1039. 30 1039299. 00 180Tight 2 3
1002. 81 1002814.00 180Tight 2 5
1049. 60 1049595. 00 180Tight 2 2
976.18 976184.00 180Tight 2 1
989. 64 989639. 00 180Tight 2 4
967.11 1967106. 00 180Tight 2 6
1047.30 1047303.00 180Tight 2 3
1011. 13 1011129.00 180Tight 2 5
1011. 08 2011078. 00 180Ti ght 2 2
984.51 984510.00 180Tight 2 1
998. 32 1998315. 00 180Tight 2 4
955. 94 1955942. 00 180Tight 2 6
941. 58 1941582. 00 180Tight 2 3
965. 73 1965729. 00 180Tight 2 5
959. 05 959050. 00 180Ti ght 2 2
994. 23 994233.00 180Tight 2 1
991. 25 991251. 00 180Tight 2 4
969. 74 1969737.00 180Tight 2 6
1036. 54 1036540. 00 180Tight 2 3
999. 65 3999654. 00 180Tight 2 5
987. 03 3987027.00 180Tight 2 2
943.50 1943495.00 180Tight 2 1
1038. 97 3038974.00 180Tight 2 4
1007. 82 2007818. 00 180Tight 2 6

5 1 972.85 1972845. 00 180Tight 2 3

991.12 2991124.00 180Tight 2 5
1000. 17 3000167. 00 180Ti ght 2 2
1072. 97 2072968. 00 180Tight 2 1
1014. 39 4014385.00 180Tight 2 4
1034. 63 3034625. 00 180Ti ght 2 6
1012. 60 3012600. 00 180Tight 2 3
979. 58 2979582. 00 180Tight 2 5
1031. 96 1031963. 00 180Tight 2 2
951. 18 2951178.00 180Tight 2 1
1066. 87 2066866. 00 180Ti ght 2 4
983. 52 983516. 00 180Tight 2 6
973.36 1973360.00 180Tight 2 5
968. 46 3968455. 00 180Ti ght 2 3
1026. 79 2026789. 00 180Ti ght 2 2
1041. 03 2041033.00 180Tight 2 1

119

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

1020. 46 2020455. 00 180Ti ght 2 4
1052. 41 4052413.00 180Tight 2 6
951. 47 2951466. 00 180Tight 2 5
995. 00 2994996. 00 180Tight 2 3
913.71 3913705.00 180Tight 2 2
961.16 1961158.00 180Tight 2 1
1019. 85 2019848. 00 180Tight 2 4
1047. 68 3047681. 00 180Ti ght 2 6
1069. 31 2069306. 00 180Tight 2 3
1025. 57 1025569. 00 180Ti ght 2 3
999. 30 1999304. 00 180Tight 2 0
1082. 97 2082970. 00 180Tight 2 0
1006. 76 3006761.00 180Tight 2 0
1082. 03 3082033. 00 180Tight 2 0
1026. 87 2026867.00 180Tight 2 0
1008. 67 1008673.00 180Tight 2 0
962. 80 962796. 00 180Tight 2 0
983. 88 983878.00 180Tight 2 0
1063. 38 1063384. 00 180Tight 2 0
992. 72 992722.00 180Tight 2 0
964. 78 964775.00 180Tight 2 0
989. 07 989065. 00 180Tight 2 0
1011. 35 1011353. 00 180Tight 2 0
937.83 1937830. 00 180Tight 2 0
995. 36 995355. 00 180Tight 2 0
1000. 25 2000251. 00 180Tight 2 0
1048. 23 3048234. 00 180Tight 2 0
949. 89 2949886. 00 180Tight 2 0
1032. 34 4032341.00 180Tight 2 0
1020. 34 2020337.00 180Tight 2 0

339939339

abhwNPFRPOMOOOOOOWOASAD
PNMNNRPPRPORPNREPRPRPWONNWERE

DVTODITOOOOO
OAWNRPOMWNER
[N NeNoNoNoNeNeNoNo)

3339

Online Stochastic Algorithm Solutions

Al gorithm Onlined ass Unassi gned Length Obj Instance |nstanceNr

NN 1 4 1237.58 5237582. 00 180Ti ght 2
NN 2 4 1237.58 5237582. 00 180Ti ght 2
NN 3 4 1237.58 5237582. 00 180Ti ght 2
NN 4 4 1252.54 5252544.00 180Ti ght 2
NN 5 5 1269.99 6269992. 00 180Ti ght 2
NI 1 1 1064.53 2064532. 00 180Ti ght 2
NI 2 1 1064.53 2064532. 00 180Ti ght 2
NI 3 1 1064.53 2064532. 00 180Ti ght 2
NIl 4 1 1064.53 2064532. 00 180Ti ght 2
NI 5 2 1052.21 3052211.00 180Ti ght 2
LO 1 5 1008.20 6008195. 00 180Ti ght 2
LO 2 5 1008.20 6008195. 00 180Ti ght 2
LO 3 5 1008.20 6008195. 00 180Ti ght 2
LO 4 6 1005.99 7005990. 00 180Ti ght 2
LO 5 5 1028.02 6028020. 00 180Ti ght 2

A.5.3 600LOOSE
Offline solution

Al gorithm Onlined ass Unassi gned Length Obj Instance |nstanceNr
OFF 0 0 489621.0 489621.0 600Loose 3

Oblivious Online Solutions

Al gorithm Onlined ass Unassigned Length Obj Instance InstanceNr runNr
RR 1 0 619.92 619917.00 600Loose 3 5

120

APPENDIX A. DETAILED TEST OUTPUT

DDTITOOOOOOOOOOOOOOOO0O0O0OO0O0O0O0O00O00O00O00OO0
PR PRV WRARDDRRWNWWWWNNNNNRERR R R R
OO0 000 ORrRONOOOOOOO0OO0000000000O0O0O0O0O0OO

QOO U O AR DMDIMDRMNOWWOWWWWWNNNNNNRRRERPR
[eNeoNoNoNeoNoNolNoNolooNoNoNoloNoll NeolloloNeoNoNeoloNoNoNoNoNe)

680.
645.
746.
645.
613.
732.
655.
617.
655.
613.
662.
649.
762.
783.
651.
628.
659.
640.
629.
662.
678.
631.
657.
645.
697.
695.
745.
696.
650.

555.
572.
529.
542.
507.
505.
534.
574.
590.
586.
542.
551.
540.
536.
525.
561.
562.
674.
633.
570.
610.
590.
552.
755.
735.
645.
722.
615.
592.
680.
607.
555.
671.

680455.
645432.
746709.
645611.
613912.
732498.
655117.
617387.
655013.
613117.
662196.
649031.
1762924. 00 600Loose 3 4
783941.
651448
628058.
659762.
640428.
629555.
662918.
678786.
631643.
657314.
645061.
697688.
695623.
745349.
696055.
650250.

555927.
572533
529169
542771.
507922.
505201.
534220
574180
590248
586486
542917.
551495
540972.
536632.
525188
561859
562307.
674065
633834.
570919
610540
590026
552622.
755308

00
00
00
00

00

600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose

600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose
600Loose

WWWWWWWWwwWwwWwWwwwwwWwwWwwwwwwwww

WWWWwwWwwWwwWwwwwww
NWFRORMONWORERND

WWWWWWWwwWwwWwwWwwwwwww
WFRPROUOANWOROORANWE OO

QWRORMIONPFPWODRMONPFPOOBRANWRFROOAMANDN

2735427. 00 600Loose 3 2
645297. 00 600Loose 3 4
1722669. 00 600Loose 3 6

615680
592319
680125
607691.
555794.
671465

00
00
00
00
00
00

600Loose
600Loose
600Loose
600Loose
600Loose
600Loose

WWwwww
OB NOOWERE

121

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

623. 96 623964. 00 600Loose
702.72 702724. 00 600Loose
732.11 732109. 00 600Loose
689. 10 689100. 00 600Loose
613.51 613512. 00 600Loose
676. 47 676468. 00 600Loose
610. 24 610240. 00 600Loose
645. 73 645732. 00 600Loose
651. 10 651104. 00 600Loose
677.34 677335. 00 600Loose
666. 84 666836. 00 600Loose
707.71 707708. 00 600Loose
596. 38 596382. 00 600Loose
648. 18 648175. 00 600Loose
694.79 694787.00 600Loose
717.55 717547.00 600Loose
659. 02 659018. 00 600Loose
671.79 671788.00 600Loose
657.91 657914. 00 600Loose
661. 00 660998. 00 600Loose
777.36 3777357.00 600Loose 3 4
738.29 738293.00 600Loose 3 2

719.56 1719560. 00 600Loose 3 6
633. 66 633664. 00 600Loose 3 3

736. 65 2736650. 00 600Loose
1 0 588.23 588225. 00 600Loose
1 0 550.79 550790. 00 600Loose
1 0 584.02 584024. 00 600Loose
10

10

WWWWWWWWwwwWwwWwwWwwwwwwwww
R WONPMAORPRWONDMORFRPRONMUUOWE

VDV VOVOVDOVXVOVDOVVAOVOOOVDODOVDOVDOODIOODOOOAD
QWA UOaORARNPAEAAERADMNWRPWWWWNNNDNNO R
NOPFRPOWOOOOOODOOOOODOOOOODOOOO

615. 17 615167. 00 600Loose
597. 04 597035. 00 600Loose
R 4 0 746.09 746088. 00 600Loose 3 3

3339

CR 2 0 618.11 618109. 00 600Loose 3 5
CR 2 0 602.98 602976. 00 600Loose 3 4
CR 2 0 610.85 610853. 00 600Loose 3 2
CR 2 0 611.00 610999. 00 600Loose 3 6
CR 2 0 587.65 587654. 00 600Loose 3 1
R 5 0 720.85 720852. 00 600Loose 3 3

CR 3 0 565.88 565876.00 600Loose 3 5
CR 3 0 586.66 586663. 00 600Loose 3 4
CR 3 0 569.20 569195. 00 600Loose 3 2
CR 3 0 586.97 586966. 00 600Loose 3 6
CR 3 0 574.15 574151. 00 600Loose 3 1
CR 1 1 606.82 1606816. 00 600Loose 3 3
CR 4 0 643.63 643627.00 600Loose 3 5
CR 4 0 646. 13 646131. 00 600Loose 3 4
CR 4 0 688.10 688101. 00 600Loose 3 2
CR 4 0 654.22 654223. 00 600Loose 3 6
CR 4 0 646.06 646064. 00 600Loose 3 1
CR 2 0 617.04 617037.00 600Loose 3 3
CR 5 0 683.18 683176.00 600Loose 3 5
CR 5 0 619.72 619720. 00 600Loose 3 4
CR 5 0 617.28 617275. 00 600Loose 3 2
CR 5 1 647.23 1647234.00 600Loose 3 6
CR 5 0 618.13 618130. 00 600Loose 3 1
CR 3 0 603.62 603623. 00 600Loose 3 3
CR 4 0 605.42 605415. 00 600Loose 3 3
CR 5 0 706.06 706064.00 600Loose 3 3
RR 1 0 586.00 585999. 00 600Loose 3 0
RR 2 0 669.22 669217.00 600Loose 3 0O
RR 3 0 697.29 697286. 00 600Loose 3 0
RR 4 0 647.88 647879.00 600Loose 3 0O
RR 5 0 653.11 653111. 00 600Loose 3 0O

122

APPENDIX A. DETAILED TEST OUTPUT

507.92 507922. 00 600Loose 3 0
596. 84 596840. 00 600Loose 3 0
525. 40 525403. 00 600Loose 3 0
587. 46 587459. 00 600Loose 3 0
681. 45 1681452. 00 600Loose 3 0
575. 61 575610. 00 600Loose 3 0
669. 13 669131. 00 600Loose 3 0
754.33 754329. 00 600Loose 3 0
641. 60 641595. 00 600Loose 3 0
719. 44 1719439. 00 600Loose
0 594.71 594705. 00 600Loose
0 602.86 602856. 00 600Loose
0 613.60 613602. 00 600Loose
0
1

DV OVDOTOOOOO

GORWNEFEPORMWNE
POOOORrROOOO

WwWwwww
[eNeoloNoNe]

612. 02 612018. 00 600Loose
719. 13 1719134. 00 600Loose 3 0

33399

Online Stochastic Algorithm Solutions

Al gorithm Onlined ass Unassi gned Length Obj Instance |nstanceNr

NN 1 1 1312.34 2312340.00 600Loose 3
NN 2 1 1298.47 2298473. 00 600Loose 3
NN 3 1 1298.47 2298473. 00 600Loose 3
NN 4 1 1281.46 2281455. 00 600Loose 3
NN 5 1 1495.67 2495668. 00 600Loose 3
NI 1 0 670.05 670049. 00 600Loose 3
NI 2 0 721.48 721484. 00 600Loose 3
NI 3 0 764. 08 764080. 00 600Loose 3
NI 4 0 705.22 705219. 00 600Loose 3
NI 5 0 745.94 745942. 00 600Loose 3
LO 1 3 568.27 3568268. 00 600Loose 3
LO 2 4 565.09 4565094. 00 600Loose 3
LO 3 4 561.96 4561961. 00 600Loose 3
LO 4 7 727.12 7727115. 00 600Loose 3
LO5 7 610.32 7610320. 00 600Loose 3

A.5.4 600TIGHT
Offline solution

Al gorithm Onlined ass Unassi gned Length Obj Instance |nstanceNr
OFF 0 0 638965.0 638965.0 600Ti ght 4

Oblivious Online Solutions

Al gorithm Onlined ass Unassi gned Length Obj Instance InstanceNr runNr

RR 1 2 748.45 2748449. 00 600Tight 4 2
RR 1 0 772.43 772430.00 600Tight 4 5
RR 1 0 788.02 788018. 00 600Ti ght 4 3
RR 1 1 749.26 1749259.00 600Tight 4 1
RR 1 0 768.46 768461.00 600Tight 4 6
RR 1 1 767.52 1767515. 00 600Ti ght 4 4
RR 2 0 756.14 756139. 00 600Ti ght 4 2
RR 2 1 771.66 1771660. 00 600Tight 4 5
RR 2 2 725.64 2725641.00 600Tight 4 1
RR 2 0 743.41 743409. 00 600Tight 4 6
RR 2 0 766.05 766045. 00 600Ti ght 4 3
RR 2 0 728.69 728694. 00 600Tight 4 4
RR 3 0 758.19 758192. 00 600Tight 4 1
RR 3 3 760.41 3760413. 00 600Tight 4 5
RR 3 0 789.85 789854. 00 600Ti ght 4 2
RR 3 0 841.62 841617.00 600Tight 4 6

123

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

VDXV OVDODOVDXDODODODXODODODTDTTOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
WWWWWWNNNNNNRPRPRPRPRPPRPUOOOOUUORADRMDNDIRDNWODWWOWWWWWNNNNNNRRERRERPR

oo abbdbADdDdDDdO®

ONOOORRPRORFRPRFRPOORPRRFPORPROORPRREPPREPNWRORPRPFPONOOOOOORNOOOOOOORL, OO

POOOOORRPPFPOOOREER

901.
829.
887.
700.
790.
761.
812.
862.
821.
775.
805.
872.
793.
836.

728.
761.
732.
782.
730.
762.
754.
758.
802.
879.
808.
913.
774.
758.
742.
723.
767.
884.
743.
709.
742.
744.
765.
735.
858.
843.
745.
813.
823.
895.
849.
820.
742.
738.
865.
789.
829.
779.
749.
807.
784.
821.
755.
733.
748.
784.
739.
781.

1901532. 00 600Ti ght 4 3
1829056. 00 600Ti ght 4 4
887792. 00 600Tight 4 1

700905. 00 600Ti ght 4 2

790197. 00 600Ti ght 4 5
1761080. 00 600Ti ght 4 6
1812233. 00 600Ti ght 4 3
1862110. 00 600Ti ght 4 4
821706. 00 600Tight 4 1

775571. 00 600Ti ght 4 2

805914. 00 600Tight 4 5
872646. 00 600Tight 4 6

793181. 00 600Tight 4 3

1836365. 00 600Ti ght 4 4
728052. 00 600Tight 4 1

761744.00 600Ti ght 4 2

1732078. 00 600Ti ght 4 5
782276. 00 600Ti ght
730764. 00 600Ti ght
762785. 00 600Ti ght
754100. 00 600Ti ght
758657. 00 600Ti ght
802599. 00 600Ti ght
879246. 00 600Ti ght
2808679. 00 600Ti ght 4 3
1913293. 00 600Ti ght 4 4
774336. 00 600Ti ght
758924. 00 600Ti ght
742428. 00 600Ti ght
723527. 00 600Ti ght
767393. 00 600Ti ght
884539. 00 600Ti ght
2743120. 00 600Tight 4 1
709449. 00 600Ti ght 4 2

1742255. 00 600Ti ght 4 5
1744333. 00 600Ti ght 4 6
765777.00 600Ti ght 4 3
1735943. 00 600Ti ght
3858715. 00 600Ti ght
2843877. 00 600Ti ght
1745463. 00 600Ti ght
1813697. 00 600Ti ght
1823005. 00 600Ti ght
1895377. 00 600Ti ght
849205. 00 600Ti ght 4 2

820890. 00 600Ti ght 4 1

1742820. 00 600Ti ght 4 6
738166. 00 600Ti ght 4 5
1865600. 00 600Ti ght 4 3
1789416. 00 600Tight 4 4
829818. 00 600Tight 4 1

779157. 00 600Ti ght 4 2

1749952. 00 600Tight 4 6
1807702. 00 600Ti ght 4 3
784686. 00 600Ti ght 4 5
1821326. 00 600Ti ght 4 4
1755993. 00 600Tight 4 1
733157. 00 600Ti ght 4 2

748244.00 600Tight 4 6
784395. 00 600Tight 4 5
2739541. 00 600Tight 4 3
781414. 00 600Ti ght 4 4

AADADMDMDAAN
OUNEFE, AW

ADADAMDADMD
rwooN R

ADMADPDDMDMADN
AWOOONE AN

124

APPENDIX A. DETAILED TEST OUTPUT

DOV AOVVAOIOIOAOOINDOAD
g abdbbdDdDdD
ANMNNFRPEFEPNMNRPORPRONEPR

FIIIVIIIFIIIITIIFIIIIFILFILIRIIS

ORAWNRUUUOOUORADEDNRARNWWWWWWNNNNNNRRRRRE R
PRPNOOOOOOO0OO0OO0OO0OO0OORROOOOONORNROROOOORO

RR

DV IOTOOOOOIJIID
A0 4040

GOhrWONREFPOOMWNPE

3399

724.
790.
752.
751.
741.
792.
770.
821.
835.
846.
863.
759.

714.
761.
777.
753.
847.
907.
790.
739.
818.
716.
785.
917.
788.
752.
772.
755.
844.
840.
784.
760.
750.
725.
783.
840.
811.
789.
801.
890.
799.
835.
819.
804.
765.
789.
831.

731.
827.
746.
744.
814.
771.
837.
742.
794.
747.

1724006. 00 600Ti ght 4 1
2790891. 00 600Ti ght 4 2
752816. 00 600Ti ght 4 6
1751212. 00 600Ti ght 4 5
741643.00 600Ti ght 4 3
1792675. 00 600Ti ght
2770689. 00 600Ti ght
1821459. 00 600Ti ght
1835354. 00 600Ti ght
2846773. 00 600Ti ght
2863846. 00 600Ti ght
4759574. 00 600Ti ght
714801. 00 600Ti ght
1761552. 00 600Ti ght 4 2
777787.00 600Ti ght 4 6
753408. 00 600Ti ght 4 5
847830. 00 600Ti ght 4 3
907428.00 600Ti ght 4 4
1790471. 00 600Tight 4 1
739275. 00 600Ti ght 4 2
1818211. 00 600Tight 4 6
2716533. 00 600Tight 4 5
1785201. 00 600Ti ght 4 3
917569. 00 600Ti ght 4 4
2788509. 00 600Ti ght 4 1
752038. 00 600Ti ght 4 2
772888.00 600Ti ght 4 6
755252. 00 600Ti ght 4 5
844827.00 600Ti ght 4 3
840428. 00 600Ti ght 4 4
1784259. 00 600Ti ght 4 1
1760643. 00 600Ti ght 4 2
750947. 00 600Ti ght
725245. 00 600Ti ght
783291. 00 600Ti ght
840642. 00 600Ti ght
811196. 00 600Ti ght
789266. 00 600Ti ght
801206. 00 600Ti ght
890065. 00 600Ti ght
799640. 00 600Ti ght
835065. 00 600Ti ght
819949. 00 600Ti ght
804852. 00 600Ti ght
2765134. 00 600Ti ght 4 0
1789173. 00 600Tight 4 0
1831467. 00 600Tight 4 0
1731181. 00 600Ti ght 4 0
827922. 00 600Ti ght 4 0
746901. 00 600Ti ght 4 0
744988. 00 600Ti ght 4 0
2814750. 00 600Ti ght 4 0
771923.00 600Ti ght 4 O
1837041. 00 600Ti ght 4 0
742976.00 600Ti ght 4 0
794619. 00 600Ti ght 4 O
1747388. 00 600Ti ght 4 0

A DA DMDMDADN
PARWOOONE AN

AADDMDMDADMDMDAIADD
COPUTWONRAWUIO®

849. 79 849790. 00 600Tight 4 0
791.90 2791900. 00 600Tight 4 0
768.59 768593. 00 600Ti ght 4 0
919. 82 1919824. 00 600Tight 4 0

1012. 95 1012954. 00 600Ti ght 4 0

125

A.5. DETAILED RESULTS OF THE COMPARISON OF ALGORITHMS

Online Stochastic Algorithm Solutions

Al gorithm OnlineC ass Unassi gned Length Obj Instance |nstanceNr

NN 1 1 1413.34 2413340. 00 600Ti ght 4
NN 2 1 1440.08 2440079.00 600Ti ght 4
NN 3 1 1440.08 2440079. 00 600Ti ght 4
NN 4 1 1433.34 2433339.00 600Ti ght 4
NN 5 1 1490. 69 2490689. 00 600Ti ght 4
NI 1 1 840.00 1839995.00 600Ti ght 4
NI 2 1 849.55 1849547.00 600Ti ght 4
NI 3 1 849.55 1849547.00 600Ti ght 4
NI 4 1 835.45 1835452. 00 600Ti ght 4
NI 5 0 749.79 749789. 00 600Ti ght 4

LO 1 3 754.95 3754948. 00 600Ti ght 4
LO 2 3 765.70 3765696. 00 600Ti ght 4
LO 3 3 765.70 3765696. 00 600Ti ght 4
LO 4 2 716.31 2716310. 00 600Ti ght 4
LO 5 5 808. 00 5808004. 00 600Ti ght 4

126

B Race Output

B.1 Impact Parameter Tuning - R Output

Raci ng nethods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race name..................... Tuning of Inpact Paraneters on

cl ass-sol onmon2
Nunmber of candidates................. 22
Nunber of available tasks............... 56
Max nunber of experiments............... ... 1200
Statistical test............, Friednan test
Tasks seen before discarding............. 10
Initialization function............ ok
Parallel Virtual Machine............. no

Mar ker s:

x No test is perforned.
- The test is performed and
sone candi dates are discarded.
= The test is performed but
no candi date is discarded.

R LR Fommmmm e LT Fommmmm e Hommmme e +
|| Task| Alive| Best| Mean best| Exp so far]|
B Feeemmeeeea Fememmeeaaa Feeemmeeena Hememmeeaas +
| x| 1 22| 4] 4.002e+09| 22|
| x| 2| 22| 4] 3.002e+09| 44
| x| 3| 22| 4] 5.002e+09| 66|
| x| 4] 22| 4] 1.225e+10| 88|
| x| 5| 22| 4| 1. 2e+10| 110]
| x| 6| 22| 4] 1.117e+10] 132]
| x| 71 22| 4| 1. 2e+10| 154
x	8	22	4	1. 35e+10	176
x	9	22	4] 1. 2e+10	198	
- 10	19	4] 1.08e+10	220		
= 11	19	4] 9. 82e+09	239		
= 12	19	4	9.002e+09	258	
=	13	19	4] 8. 31e+09	277	
= 14	19	4	7.716e+09	296	
= 15	19	4	7.669e+09	315	
= 16	19	4] 7.19e+09	334		
= 17	19	4	6.767e+09	353	
= 18	19	4	6.391e+09	372	
= 19	19	4] 6.055e+09	391		
= 20	19	4] 5.752e+09	410]		
= 21	19	4] 6.002e+09	429		
= 22	19	4] 5.729e+09	448		
= 23	19	4] 6.002e+09	467		
= 24	19	4] 5.877e+09	486		
= 25	19	4	5.922e+09	505	
= 26	19	4	6.002e+09	524	
= 27	19	4	5.891e+09	543	
= 28	19	4	5.681e+09	562	
= 29	19	4	5.485e+09	581	
= 30	19	4	5.302e+09	600	
= 31	19	4	5.131e+09	619	
= 32	19	4	4.971e+09	638	
= 33	19	4	4.851e+09	657	
= 34	19	4	4.708e+09	676	
= 35	19	4	4.631e+09	695	
= 36	19	4] 4.53e+09	714		
= 37	19	4] 4.435e+09	733		
= 38	19	4] 4.318e+09	752		
= 39	19	4] 4.694e+09	771		
= 40	19	4] 4.727e+09	790		
= 41	19	4	4.709e+09	809	
= 42	19	4	5.002e+09	828	
= 43	19	4	5.397e+09	847	
= 44	19	4	5.388e+09	866	

127

B.1. IMPACT PARAMETER TUNING - R OUTPUT

| =| 45| 19| 4| 5.513e+09| 885
| =| 46| 19| 4| 5.763e+09| 904
=	47	19	4] 6.045e+09	923
=	48	19	4] 6.065e+09	942
=	49	19	4] 5.961e+09	961
=	50	19	4] 5.862e+09	980
= 51	19	4] 5.747e+09	999	
=	52	19	4	5.829e+09
=	53	19	4	5.964e+09
=	54	19	4	5.965e+09
=	55	19	4] 6. 02e+09	1075
=	56	19	4	5.948e+09
[S — [S —_ S S S +
Sel ect ed candi dat e: 4 nean val ue: 5.948e+09

Description of the selected candidate
| abel comand
4 1-1-8 runlnpact.jar 10 10 80

$precis
[1] "\nRacing nethods for the selection of the best\nCopyright (C) 2003 Mauro Birattari\nThis software comes wi th ABSOLUTELY NO WARR/

$results

[.1] [.2] [.3] [.4] [.5] [.6]
30002666743 30002666743 10002124943 4002079342 4002079342 4002079342
35002573675 35002573675 14002267462 2002031084 2002031084 2002031084
43002223661 43002223661 34002147180 9001820688 9001820688 9001820688
52001876951 52001876951 46001794378 34001679408 34001679408 34001679408
26002466616 26002466616 17002207186 11002232000 11002232000 11002232000
28002266458 28002266458 27002037508 7001872851 7001872851 7001872851
40002179539 40002179539 29002035582 17001835444 17001835444 17001835444
52002107617 52002107617 42001922064 24001762993 24001762993 24001762993

) 5002838830 5002838830 1002506278 2490933 2490933 2490933
) 8002504552 8002504552 2002456302 2147668 2147668 2147668
) 2105298 2105298 2105298
) 1864733 1864733 1864733
) 2295745 2295745 2295745
) 2334613 2334613 2334613
) 7002054322 7002054322 7002054322

1912129 1912129 1912129

2506797 2506797 2506797

2667283 2667283 2667283
, 2385567 2385567 2444337
) 1297031 1297031 1297031
) 11001971079 11001971079 11001971079
) 2259683 2259683 2259683

12002017015 12002017015 12002017015
3001088451 3001088451 3001088451
7001551941 7001551941 7001551941
8001706941 8001706941 8001706941
3001195437 3001195437 3001195437

2498030 2498030 2498030

2478148 2478148 2478148

s 2554385 2554385 2554385
s 2345474 2345474 2345474
s 2750943 2750943 2753417
1002597886 1002597886 1002597886

3077338 3077338 3077338

2002755043 2002755043 2002755043
1002004219 1002004219 1002004219
1001967221 1001967221 1001965344
1797627 1797627 1797627
19001612333 19001612333 19001612333
6001853616 6001853616 6001853616
4001882318 4001882318 4001882318
17001594059 17001594059 17001594059
22001478282 22001478282 22001478282
5001772265 5001772265 5001772265
11001679067 11001679067 11001679067
17001582342 17001582342 17001582342
19001574116 19001574116 19001574116
7001245393 7001245393 7001245393
1002073182 1002073182 1002073182
1002536319 1002536319 1002536319
1978379 1978379 1978379
10001774925 10001774925 10001774925
13002153736 13002153736 13002153736
6001878723 6001878723 6001878723
9002423915 9002423915 9002423915
2001923778 2001923778 2001923778
. . [,9] [,10] [,11] [,12]
[1,] 4002079342 4002079342 4002079342 4002079342 4002079342 4002079342

CEEEFFSEFFSFFF 55555555555 555555555555 555555555%
ZEFFFFFE5FFFFFFF 55555555 5555555555555 5%55%855%¢%

2EEEEESEF S5 S5 TS5 FFF5FSFSF5FF55SF5FF5555SF5555%55%%

128

APPENDIX B. RACE OUTPUT

2,] 2002031084
3,] 9001820688
4,] 34001679408
5,] 11002232000
6,] 7001872851
7,] 17001835444
8,] 24001762993
9,] 2490933
0,] 2147668
1,] 2105298
2,] 1864733
3,] 2295745
4,] 2334613
5,] 7002054322
6.1 1912129
7.1 2506797
8,1 2667283
9,] 2385567
0.] 1297031
1,] 11001971079
2,] 2259683
3,] 12002017015
4,] 3001088451
5,] 7001551941
6,] 8001706941
7,] 3001195437
8,] 2498030
9,] 2478148
0.] 2554385
1,] 2345474
2,1 2750943
3,] 1002597886
4, 3077338
5,] 2002755043
6,] 1002004219
7.] 1001967221
8,] 1797627
9,] 19001612333
0,] 6001853616
1,] 4001882318
2,] 17001594059
3,] 22001478282
4,] 5001772265
5,] 11001679067
6,] 17001582342
7,] 19001574116
8,] 7001245393
9,] 1002073182
0,] 1002536319
1,] 1978379
2,] 10001774925
3,] 13002153736
4,] 6001878723
5,] 9002423915
6,] 2001923778
[,13]
4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2444337
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

NRONNNNNNNNPERRRRER R R R ——
ONOURWONFRPOORXNOUAWNFRFOOONOUDWNE

2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030
2478148
2554385
2345474
2750943
1002597886
3077338
2002755043
1002004219
1001967221
1797627
19001612333
6001853616
4001882318
17001594059
22001478282
5001772265
11001679067
17001582342
19001574116
7001245393
1002073182
1002536319
1978379
10001774925
13002153736
6001878723
9002423915
2001923778
[,14]

4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2444337
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2444337
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030
2478148
2554385
2345474
2750943
1002597886
3077338
2002755043
1002004219
1001967221
1797627
19001612333
6001853616
4001882318
17001594059
22001478282
5001772265
11001679067
17001582342
19001574116
7001245393
1002073182
1002536319
1978379
10001774925
13002153736
6001878723
9002423915
2001923778
[, 15]
4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030
2478148
2554385
2345474
2750943
1002597886
3077338
2002755043
1002004219
1001967221
1797627
19001612333
6001853616
4001882318
17001594059
22001478282
5001772265
11001679067
17001582342
19001574116
7001245393
1002073182
1002536319
1978379
10001774925
13002153736
6001878723
9002423915
2001923778
[, 16]
4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030
2478148
2554385
2345474
2750943
1002597886
3077338
2002755043
1002004219
1001967221
1797627
19001612333
6001853616
4001882318
17001594059
22001478282
5001772265
11001679067
17001582342
19001574116
7001245393
1002073182
1002536319
1978379
10001774925
13002153736
6001878723
9002423915
2001923778
[,17]

4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2444337
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

129

2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2385567
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030
2478148
2554385
2345474
2750943
1002597886
3077338
2002755043
1002004219
1001967221
1797627
19001612333
6001853616
4001882318
17001594059
22001478282
5001772265
11001679067
17001582342
19001574116
7001245393
1002073182
1002536319
1978379
10001774925
13002153736
6001878723
9002423915
2001923778
[, 18]
4002079342
2002031084
9001820688
34001679408
11002232000
7001872851
17001835444
24001762993
2490933
2147668
2105298
1864733
2295745
2334613
7002054322
1912129
2506797
2667283
2444337
1297031
11001971079
2259683
12002017015
3001088451
7001551941
8001706941
3001195437
2498030

B.1. IMPACT PARAMETER TUNING - R OUTPUT

QUUOOOTUTUEDDRDERADNDDDWWOWWWWWWDN
SURONPOOONDURWNFROOONOTRONRO®

OARWNFPOOONOURWNROOONONAWNFROOINDONRWNPOOONOURAWNROOONDOAWNR

QOO OUOABBEBEDLEAEDBEDRRPWWWWWWWWWWNRNNNNNNNNNRPRRRPRREPRRPRRPp I r—r—mrr—r—

2478148 2478148 2478148 2478148 2478148 2478148
2554385 2554385 2554385 2554385 2554385 2554385
2345474 2345474 2345474 2345474 2345474 2345474
2750943 2750943 2750943 2750943 2750943 2750943
1002597886 1002597886 1002597886 1002597886 1002597886 1002597886
3077338 3077338 3077338 3077338 3077338 3077338

2002755043 2002755043 2002755043 2002755043 2002755043 2002755043
1002004219 1002004219 1002004219 1002004219 1002004219 1002004219
1001967221 1001967221 1001967221 1001967221 1001967221 1001967221
1797627 1797627 1797627 1797627 1797627 1797627
19001612333 19001612333 19001612333 19001612333 19001612333 19001612333
6001853616 6001853616 6001853616 6001853616 6001853616 6001853616
4001882318 4001882318 4001882318 4001882318 4001882318 4001882318
17001594059 17001594059 17001594059 17001594059 17001594059 17001594059
22001478282 22001478282 22001478282 22001478282 22001478282 22001478282
5001772265 5001772265 5001772265 5001772265 5001772265 5001772265
11001679067 11001679067 11001679067 11001679067 11001679067 11001679067
17001582342 17001582342 17001582342 17001582342 17001582342 17001582342
19001574116 19001574116 19001574116 19001574116 19001574116 19001574116
7001245393 7001245393 7001245393 7001245393 7001245393 7001245393
1002073182 1002073182 1002073182 1002073182 1002073182 1002073182
1002536319 1002536319 1002536319 1002536319 1002536319 1002536319
1978379 1978379 1978379 1978379 1978379 1978379
10001774925 10001774925 10001774925 10001774925 10001774925 10001774925
13002153736 13002153736 13002153736 13002153736 13002153736 13002153736
6001878723 6001878723 6001878723 6001878723 6001878723 6001878723
9002423915 9002423915 9002423915 9002423915 9002423915 9002423915
2001923778 2001923778 2001923778 2001923778 2001923778 2001923778
[,19] [,20] [,21] [,22]
4002079342 4002079342 4002079342 4002079342
2002031084 2002031084 2002031084 2002031084
9001820688 9001820688 9001820688 9001820688
34001679408 34001679408 34001679408 34001679408
11002232000 11002232000 11002232000 11002232000
7001872851 7001872851 7001872851 7001872851
17001835444 17001835444 17001835444 17001835444
24001762993 24001762993 24001762993 24001762993

2490933 2490933 2490933 2490933
2147668 2147668 2147668 2147668
2105298 2105298 2105298 2105298
1864733 1864733 1864733 1864733
2295745 2295745 2295745 2295745
2334613 2334613 2334613 2334613
7002054322 7002054322 7002054322 7002054322
1912129 1912129 1912129 1912129
2506797 2506797 2506797 2506797
2667283 2667283 2667283 2667283
2444337 2444337 2385567 2385567
1297031 1297031 1297031 1297031
11001971079 11001971079 11001971079 11001971079
2259683 2259683 2259683 2259683

12002017015 12002017015 12002017015 12002017015
3001088451 3001088451 3001088451 3001088451
7001551941 7001551941 7001551941 7001551941
8001706941 8001706941 8001706941 8001706941
3001195437 3001195437 3001195437 3001195437

2498030 2498030 2498030 2498030
2478148 2478148 2478148 2478148
2554385 2554385 2554385 2554385
2345474 2345474 2345474 2345474
2750943 2750943 2750943 2750943
1002597886 1002597886 1002597886 1002597886
3077338 3077338 3077338 3077338

2002755043 2002755043 2002755043 2002755043
1002004219 1002004219 1002004219 1002004219
1001967221 1001967221 1001967221 1001967221
1797627 1797627 1797627 1797627
19001612333 19001612333 19001612333 19001612333
6001853616 6001853616 6001853616 6001853616
4001882318 4001882318 4001882318 4001882318
17001594059 17001594059 17001594059 17001594059
22001478282 22001478282 22001478282 22001478282
5001772265 5001772265 5001772265 5001772265
11001679067 11001679067 11001679067 11001679067
17001582342 17001582342 17001582342 17001582342
19001574116 19001574116 19001574116 19001574116
7001245393 7001245393 7001245393 7001245393
1002073182 1002073182 1002073182 1002073182
1002536319 1002536319 1002536319 1002536319
1978379 1978379 1978379 1978379
10001774925 10001774925 10001774925 10001774925
13002153736 13002153736 13002153736 13002153736
6001878723 6001878723 6001878723 6001878723
9002423915 9002423915 9002423915 9002423915

130

APPENDIX B. RACE OUTPUT

[56,] 2001923778 2001923778 2001923778 2001923778

$no. candi dat es
[1] 22

$no. t asks
[1] 56

$no. subt asks
[1 1

$no. experinents
[1] 1094

$no. al i ve
[1] 19

$alive
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$best
[1] 4

$nmean. best
[1] 5948446599

$tinestanp. start
[1] "Fri Apr 24 08:50:03 2009"

$tinestanp. end
[1] "Fri Apr 24 08:56:33 2009"

$descri ption. best
| abel conmmand
4 1-1-8 runlnpact.jar 10 10 80

$alive.inTine
[1] 22

B.2 ILS Permutation Tuning - R Output

Racing nethods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race name........................ Tuning of ILS Paraneters on
cl ass-sol onmon2

Nunmber of candidates.................................... .. 13
Nunber of available tasks............................... .. 56
Max nunber of experinments............ 728
Statistical test............ Friednman test
Tasks seen before discarding............. 6

Initialization function.............
Paral l el Virtual Machine

Mar ker s:

x No test is perforned.
- The test is performed and
sone candi dates are discarded.
= The test is performed but
no candi date is discarded.

B T L L Fommm - L +
|| Task| Alive| Best| Mean best| Exp so far]|
R LT Fommmm L Fommmm - Fommmmmm e n +
x	1	13	11	1.747e+06	13
x	2	13	8	5.162e+07	26
x	3	13	9	6.819e+07	39
x	4] 13	9] 1.264e+08	52		
x	5	13	6] 1.415e+08	65	
= 6	13	6] 1.181e+08	78		
= 7	13	6] 1.015e+08	91		
- 8	7	6	1.015e+08	104	
=l 9	7	9	9.029e+07	111]	
=	10	7	9	8.138e+07	118
=	11	7	9	7.407e+07	125]
=	12	7	9	6.797e+07	132]

131

B.2. ILS PERMUTATION TUNING - R OUTPUT

=	13 7	9	6.282e+07	139
=	14] 7	9	5.841e+07	146
= 15	7	9	5.458e+07	153
= 16	7	9	5.122e+07	160]
-1 17	3	9	4.826e+07	167
-1 18	2	9	4.563e+07	170
E 19	2	9	4.328e+07	172]
=l 20	2	9	4.115e+07	174
=l 21	2	9	4. 4e+07	176
=l 22	2	9	4.203e+07	178
=l 23	2	9	4. 46e+07	180
=l 24	2	9	4.694e+07	182
=l 25	2	9	4.509e+07	184
=l 26	2	9	4.338e+07	186
=	27] 2	9] 4.18e+07	188	
=	28	2	9	4.036e+07
=	29	2	9] 3.902e+07	192
=	30	2	9	3.775e+07
=	31	2	9	3.657e+07
= 32	2	9	3.547e+07	198
= 33	2	9	3.443e+07	200
= 34	2	9	3.345e+07	202
= 35	2	9	3.252e+07	204
I =l 36	2	9	3.167e+07	206
=l 37	2	9] 3.085e+07	208	
=l 38	2	9	3.008e+07	210
= 39	2	9	2.933e+07	212
=l 40	2	9	2.864e+07	214
=l 41] 2	9	3.041e+07	216	
=l 42	2	9	3.209e+07	218
=l 43	2	9	3.369e+07	220
=	44	2	9	3.523e+07
=	45	2	9	3.447e+07
=	46	2	9] 4.027e+07	226
=	47	2	9] 3.943e+07	228
=	48	2	9	4.488e+07
=	49	2	9	4.603e+07
= 50	2	9] 4.513e+07	234	
= 51	2	9	4.426e+07	236
= 52	2	9	4.343e+07	238
I =l 53	2	9	4.452e+07	240
=l 54	2	9	4.371e+07	242
=l 55	2	9	4.293e+07	244
=l 56	2	9	4.219e+07	246
Fommmmmmaaaas Fommmmmmaaan Fommmmmmaaaa Foemmmmmaaan Fommmmmeaaaa +
Sel ect ed candi dat e: 9 nean value: 4.219e+07

Description of the selected candidate:
| abel comand
9 R25-EO0 runlLSRace.jar 25 -1

$precis
[1] "\nRacing nethods for the selection of the best\nCopyright (C) 2003 Mauro Birattari\nThis software comes with ABSOLUTELY NO WARR/

$results
[.1] [.2] [.3] [.4] [.5] [.6] [.7]
[1,] 101693139 101838462 201691201 101717873 201696242 101707540 101681751
[2,] 1685588 1667377 1571879 1746904 1629472 1601070 1666714
[3,] 101400601 101351287 101355637 101313931 101363605 101303096 101276698
[4,] 501319678 301280322 301316323 701319824 401177083 401180132 301173274
[5,] 101676552 101820849 201655302 101645680 201598169 101640097 201672492
[6,] 1484003 1488833 1482303 1493530 1460930 1452241 1435121
[7,] 1295539 1388317 101417296 1326622 101330480 1406890 101327410
[8,] 201347590 201278857 1301481 201316602 201272816 101345220 1303807
[9,] NA 1281578 1294687 NA NA 1331685 1312914
[10,] NA 1361338 1317402 NA NA 1269668 1226757
[11,] NA 1004633 1033531 NA NA 1062475 1010167
[12,] NA 911982 892521 NA NA 813681 874509
[13,] NA 1067069 1071664 NA NA 1080729 1080065
[14,] NA 1130829 1027118 NA NA 1033654 1086017
[15,] NA 937216 947046 NA NA 960596 936071
[16,] NA 824941 853874 NA NA 794912 806982
[17,] NA 1036531 996755 NA NA 973779 961861
[18,] NA NA NA NA NA NA 1052212
[19,] NA NA NA NA NA NA NA
[20,] NA NA NA NA NA NA NA
[21,] NA NA NA NA NA NA NA
[22,] NA NA NA NA NA NA NA
[23,] NA NA NA NA NA NA NA
[24,] NA NA NA NA NA NA NA
[25,] NA NA NA NA NA NA NA
[26,] NA NA NA NA NA NA NA

132

APPENDIX B. RACE OUTPUT

CEEEFF 5555555555555 555555555%
CEEFSFSFSFFSFSEFSFESFESEFSESE555%
SFFS5FF 5555 55555555555 5555555%5%
$FEEFESEFSFSFFFFEFSFEF55SF555555%5%
FESFFFFFFESFFFESFETFFEFESEFEE5ESE
$EEFESF5552FF5555S555555555%5%5%

. . [,10] [,11] [,12] [,13]
101676031 101663403 101762558 1747145 1825355 1824957

1559973 1598734 1634375 1725025 1731383 1860763
101317876 101308897 101369086 101420453 101435126 101441879
601122435 301209203 701273506 501266652 501302212 501291747
101690869 201514987 101746247 101773418 101778023 201802248

1459034 1466745 1483049 1471734 1499565 1488446
101344130 101303440 1429876 1405121 101395049 201411637
101288559 1271688 201319265 101378569 101397981 201325029

) 1248128 1294075 1329786
) 1186819 1164008 1300383
1098172 981758 1058403
834931 849296 934222
1072057 1072271 1067803
) 969547 1054152 1082875
) 949024 922958 939688
) 797525 785240 857446
971011 961404 1041948

1028021 989458
881885 864255
776681 715073
1023009 100998624
742710 739598
957395 100959860
776677 100897859
715221 686408
588287 693175
783246 721729
1539244 1506010
1372458 1343478
1217679 1092757
959068 1057721
1478727 1455224
1218698 1204990
1124772 1083218
899267 910576
1710095 1672908
1535131 1532458
1309782 1330271
1082780 1048158
1505593 1516042
101298337 101302552
201068184 101082355

1046700 101045036
101306397 101211575
101154904 1175018
201176216 301105520

1024789 1019795
401063940 300975790

1074125 100936716

1020169 1133006

1076236 908872
865171 957022

100899576 101133591

PNPOOONOURWNFRFOOPINOTNRONPOOONOUIAWNROOINDURWNROOONOUTAWNE

SFFFSFF 555555555555 55555555555 5555555555555%5%
FFESFFFFESFESFFFFESFFTFFFFESFFFFSFSFFFFESFEFFEFEFEFES
$E2FEEE55F52F5FF552FSF5F552F5F5555255552F555555%55%%

$EEFEEFFSFSFFFFEFSFFE5SFS555555555%5¢%

133

SFESFSFEFSFESFFFFESFSFEFESESFEFEF5E5E

B.3. LO POOL SIZE TUNING - R OUTPUT

[54,] 1096625 987735
[55,] 990179 930371
[56,] 881755 1044550

££3
£5%
$£%
$£%

$no. candi dat es
[1] 13

$no. t asks
[1] 56

$no. subt asks
[1 1

$no. experinents
[1] 246

$no. al i ve
[1] 2

$alive
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[13] FALSE

$best
[1] 9

$nmean. best
[1] 42185565

$tinestanp. start
[1] "Mon Apr 27 21:44:26 2009"

$tinestanp. end
[1] "Mon Apr 27 22:28:41 2009"

$descri pti on. best
| abel conmmand
9 R25-EO0 runl LSRace.jar 25 -1

$alive.inTine
[1] 13

B.3 LO Pool Size Tuning - R Output

R version 2.6.2 (2008-02-08)
Copyright (C) 2008 The R Foundation for Statistical Conputing
| SBN 3-900051-07-0

Ris free software and comes wi th ABSCLUTELY NO WARRANTY.
You are wel come to redistribute it under certain conditions.
Type 'license()’ or 'licence()’ for distribution details.

Nat ural | anguage support but running in an English |locale

R is a collaborative project with nany contributors.
Type 'contributors()’ for nore infornation and
"citation()’ on howto cite R or R packages in publications.

Type 'deno()’ for sone denpbs, 'help()’' for on-line help, or
"hel p.start()’ for an HTM. browser interface to help.
Type 'q()’ to quit R

> |ibrary(race)
> source("race. STC. R")
> |aunch()

Raci ng nmethods for the selection of the best
Copyright (C) 2003 Mauro Birattari
This software cones with ABSOLUTELY NO WARRANTY

Race name................c.oiuiinnn. Tuni ng of LO pool size on

cl ass-sol onon2
Nunber of candidates............ i,
Nunber of avail abl e tasks
Max nunber of experinents
Statistical test........... i,
Tasks seen before discarding............... 6
Initialization function..................
Paral l el Virtual Machine

134

APPENDIX B. RACE OUTPUT

Mar ker s:
x No test is perforned.
- The test is performed and

Sel ect ed candi dat e:

sonme candi dates are discarded
= The test is perfornmed but
no candidate is discarded

-------- Foccccccmceatanecnaaaaaat
Best| Mean best| Exp so far|
-------- T
1| 9.002e+09| 3
1] 1. 4e+10| 6
3| 1.767e+10| 9
2| 2.25e+10| 12
2| 2. 2e+10| 15
2| 2.117e+10| 18
2| 2.557e+10| 21
2| 3. 2e+10| 24
2| 2.956e+10| 27|
2| 2.76e+10| 30|
2| 2.655e+10| 33|
2| 2.567e+10| 36|
2| 2.477e+10]| 39|
3| 2.193e+10| 42
3| 2. 14e+10| 45
3| 2.169e+10| 48
2| 2.23e+10| 51
2| 2.178e+10| 54
2| 2.253e+10| 57
2| 2.155e+10| 60
-------- T T

2 mean value: 2.155e+10

Description of the selected candidate

| abel

conmmand

2 size5 runRacePool size.jar 5

$precis

[1]

$results

.1
] 9001821587
] 19001545162
] 26001296132
] 41000928166
] 20001596653
] 25001410238
] 32000974927
] 45000906853
] 12001573456
] 16001241266
] 12001111605
] 16000957035
] 13001443954
] 18001183610
] 19000999637
] 17000926348
] 13001488634
] 25001059907
] 25000954086
] 3000647998

. candi dat es
[1 3

. tasks
20

. subt asks
[1 1

.experinments
60

.alive
[1] 3

$alive

"\ nRaci ng net hods for the

[.2
13001892503
15001513106
26001229844
36001024548
20001576996
17001450493
52000813715
77000414322
10001560985
10001428129
16001196459
16001069085
14001389671

9001371867
18000984559
18000992283
12001249063
13001398950
36000924927

3000701566

[1] TRUE TRUE TRUE

sel ection of

[,3]
11001845705
18001479017
24001249406
43000827531
24001592205
18001321364
58000774086
40001028753
12001533312
10001346343
11001188390
17001013617
13001352503

8001182919
14000997101
26000919084
19001210413
29001027997

8001170930

4000733889

135

the best\nCopyright (C) 2003 Mauro Birattari\nThis software cones wi th ABSOLUTELY NO WARRANTY\ n\ nRace name

B.3. LO POOL SIZE TUNING - R OUTPUT

$hest
[1] 2

$nmean. best
[1] 21551209154

$timestanp. start

[1] "Tue Apr 28 09:46:08 2009"

$tinest anp. end

[1] "Tue Apr 28 20:56:15 2009"

$descri ption. best
| abel command
2 size5 runRacePool size.jar 5

$alive.inTinme
[1] 3

136

